SINGULARITIES, INCOMPLETENESS AND THE LORENTZIAN DISTANCE FUNCTION

被引:21
|
作者
BEEM, JK
EHRLICH, PE
机构
关键词
D O I
10.1017/S0305004100055584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:161 / 178
页数:18
相关论文
共 50 条
  • [31] Cosmological singularities, Einstein billiards and Lorentzian Kac-Moody algebras
    Damour, T
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (02) : 293 - 330
  • [32] Avoiding singularities in Lorentzian-Euclidean black holes: The role of atemporality
    Capozziello, Salvatore
    De Bianchi, Silvia
    Battista, Emmanuele
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [33] Sub-Lorentzian distance and spheres on the Heisenberg group
    Yuri L. Sachkov
    Elena F. Sachkova
    Journal of Dynamical and Control Systems, 2023, 29 : 1129 - 1159
  • [34] Sub-Lorentzian distance and spheres on the Heisenberg group
    Sachkov, Yuri L.
    Sachkova, Elena F.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 1129 - 1159
  • [35] Recognizable classification of Lorentzian distance-squared mappings
    Ichiki, Shunsuke
    Nishimura, Takashi
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 81 : 62 - 71
  • [36] Comparison theory of Lorentzian distance with applications to spacelike hypersurfaces
    Alias, Luis J.
    Hurtado, Ana
    Palmer, Vicente
    PHYSICS AND MATHEMATICS OF GRAVITATION, 2009, 1122 : 91 - +
  • [37] A new Classification Method by using Lorentzian Distance Metric
    Bilge, Hasan Sakir
    Kerimbekov, Yerzhan
    Ugurlu, Hasan Huseyin
    2015 INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA) PROCEEDINGS, 2015, : 296 - 301
  • [38] On the singularities of distance functions in Hilbert spaces
    Stroemberg, Thomas
    ARCHIV DER MATHEMATIK, 2024, 122 (06) : 671 - 679
  • [39] The wave function of the Universe with Lorentzian wormhole
    Kim, SW
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (7-9): : 999 - 1004
  • [40] Reversible magnetization and lorentzian function approximation
    Azzerboni, B., 1600, American Institute of Physics Inc. (93):