EXTENDED WEYL-TYPE THEOREMS FOR DIRECT SUMS

被引:2
|
作者
Berkani, M. [1 ]
Kachad, M. [1 ]
Zariouh, H. [2 ,3 ]
机构
[1] Univ Mohammed 1, Sci Fac Oujda, Dept Math, Operator Theory Team, Oujda, Morocco
[2] Ctr Reg Metiers Educ & Format, Oujda, Morocco
[3] Univ Mohammed 1, Fac Sci Oujda, Dept Math, Equipe Theorie Operateurs, Oujda, Morocco
关键词
property (gab); property (gaw); direct sums; B-Weyl spectrum;
D O I
10.2478/dema-2014-0032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the stability of extended Weyl and Browdertype theorems for orthogonal direct sum S circle plus T, where S and T are bounded linear operators acting on Banach space. Two counterexamples shows that property (ab), in general, is not preserved under direct sum. Nonetheless, and under the assumptions that Pi(0)(a) (T) subset of sigma(a) (S) and Pi(0)(a) (S) subset of sigma(a) (T), we characterize preservation of property (ab) under direct sum S circle plus T. Furthermore, we show that if S and T satisfy generalized a-Browder's theorem, then S circle plus T satisfies generalized a-Browder's theorem if and only if sigma(SBF)-(+) (S circle plus T)= sigma(SBF)-(+) (S)boolean OR sigma(SBF)-(+) (T); which improves a recent result of [13] by removing certain extra assumptions.
引用
收藏
页码:411 / 422
页数:12
相关论文
共 50 条