ARTIFICIAL NEURAL-NETWORK TECHNIQUES FOR ESTIMATING HEAVY CONVECTIVE RAINFALL AND RECOGNIZING CLOUD MERGERS FROM SATELLITE DATA

被引:29
|
作者
ZHANG, M
SCOFIELD, RA
机构
[1] NOAA/NESDIS Satellite Application Laboratory, NOAA Scicnce Center, Washington, DC
基金
美国海洋和大气管理局;
关键词
D O I
10.1080/01431169408954324
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This research presents an artificial neural network (ANN) technique for heavy convective rainfall estimation and cloud merger recognition from satellite data. An Artificial Neural network expert system for Satellite-derived Estimation of Rainfall (ANSER) has been developed in the NOAA/NESDIS Satellite Applications Laboratory. Using artificial neural network group techniques, the following can be achieved: automatic recognition of cloud mergers, computation of rainfall amounts that will be ten times faster, and average errors of the rainfall estimates for the total precipitation event that will be reduced to less that 10 per cent.
引用
收藏
页码:3241 / 3261
页数:21
相关论文
共 41 条
  • [31] Estimating sunshine duration from other climatic data by artificial neural network for ET0 estimation in an arid environment
    Rahimikhoob, Ali
    THEORETICAL AND APPLIED CLIMATOLOGY, 2014, 118 (1-2) : 1 - 8
  • [32] Estimating sunshine duration from other climatic data by artificial neural network for ET0 estimation in an arid environment
    Ali Rahimikhoob
    Theoretical and Applied Climatology, 2014, 118 : 1 - 8
  • [33] Integrated analysis of spatial data from multiple sources: Using evidential reasoning and artificial neural network techniques for geological mapping
    Gong, P
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1996, 62 (05): : 513 - 523
  • [34] Snow and cloud detection using a convolutional neural network and low-resolution data from the Electro-L No. 2 Satellite
    Bloshchinskiy, Vladislav D.
    Kuchma, Mikhail O.
    Andreev, Alexander, I
    Sorokin, Aleksei A.
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (03)
  • [35] A combined approach for estimating horizontal principal stress magnitudes from borehole breakout data via artificial neural network and rock failure criterion
    Lin, H.
    Singh, S.
    Oh, J.
    Canbulat, I.
    Kang, W. H.
    Hebblewhite, B.
    Stacey, T. R.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2020, 136
  • [36] RETRIEVAL OF ATMOSPHERIC AND LAND SURFACE PARAMETERS FROM SATELLITE-BASED THERMAL INFRARED HYPERSPECTRAL DATA USING AN ARTIFICIAL NEURAL NETWORK TECHNIQUE
    Chen, Mengshuo
    Ni, Li
    Jiang, Xiaoguang
    Li, Zhaoliang
    Wu, Hua
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2745 - 2748
  • [37] An Artificial Neuron Network With Parameterization Scheme for Estimating Net Surface Shortwave Radiation From Satellite Data Under Clear Sky - Application to Simulated GF-5 Data Set
    Si, Menglin
    Tang, Bo-Hui
    Li, Zhao-Liang
    Nerry, Francoise
    Zhang, Xia
    Shang, Guofei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4262 - 4272
  • [38] Predicting Petroleum SARA Composition from Density, Sulfur Content, Flash Point, and Simulated Distillation Data Using Regression and Artificial Neural Network Techniques
    Shiskova, Ivelina
    Stratiev, Dicho
    Sotirov, Sotir
    Sotirova, Evdokia
    Dinkov, Rosen
    Kolev, Iliyan
    Stratiev, Denis D.
    Nenov, Svetoslav
    Ribagin, Simeon
    Atanassov, Krassimir
    Yordanov, Dobromir
    van den Berg, Frans
    PROCESSES, 2024, 12 (08)
  • [39] Roof bolt identification in underground coal mines from 3D point cloud data using local point descriptors and artificial neural network
    Singh, Sarvesh Kumar
    Raval, Simit
    Banerjee, Bikram
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (01) : 367 - 377
  • [40] Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
    Shiri, J.
    Dierickx, W.
    Baba, A. Pour-Ali
    Neamati, S.
    Ghorbani, M. A.
    HYDROLOGY RESEARCH, 2011, 42 (06): : 491 - 502