ARTIFICIAL NEURAL-NETWORK TECHNIQUES FOR ESTIMATING HEAVY CONVECTIVE RAINFALL AND RECOGNIZING CLOUD MERGERS FROM SATELLITE DATA

被引:29
|
作者
ZHANG, M
SCOFIELD, RA
机构
[1] NOAA/NESDIS Satellite Application Laboratory, NOAA Scicnce Center, Washington, DC
基金
美国海洋和大气管理局;
关键词
D O I
10.1080/01431169408954324
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This research presents an artificial neural network (ANN) technique for heavy convective rainfall estimation and cloud merger recognition from satellite data. An Artificial Neural network expert system for Satellite-derived Estimation of Rainfall (ANSER) has been developed in the NOAA/NESDIS Satellite Applications Laboratory. Using artificial neural network group techniques, the following can be achieved: automatic recognition of cloud mergers, computation of rainfall amounts that will be ten times faster, and average errors of the rainfall estimates for the total precipitation event that will be reduced to less that 10 per cent.
引用
收藏
页码:3241 / 3261
页数:21
相关论文
共 41 条
  • [1] Neuron-adaptive Neural Network model for estimating heavy rainfall from satellite data
    Zhang, M
    Xu, SX
    Qi, H
    Scofield, RA
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 567 - 570
  • [2] Convective and Stratiform Cloud Rainfall Estimation from Geostationary Satellite Data
    李俊
    王路易
    周风仙
    Advances in Atmospheric Sciences, 1993, (04) : 475 - 480
  • [3] A neural network approach to estimating rainfall from spaceborne microwave data
    Tsintikidis, D
    Haferman, JL
    Anagnostou, EN
    Krajewski, WF
    Smith, TF
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (05): : 1079 - 1093
  • [4] ARTIFICIAL NEURAL-NETWORK FOR IDENTIFICATION OF A SUBSTANCE FROM A MOSSBAUER DATA-BANK
    SALLES, EOT
    DESOUZA, PA
    GARG, VK
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1994, 94 (04): : 499 - 502
  • [5] Using cloud water path and cloud top temperature for estimating convective and stratiform rainfall from SEVIRI daytime data
    Mourad Lazri
    Soltane Ameur
    Arabian Journal of Geosciences, 2016, 9
  • [6] Using cloud water path and cloud top temperature for estimating convective and stratiform rainfall from SEVIRI daytime data
    Lazri, Mourad
    Ameur, Soltane
    ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (11)
  • [7] CLANN: Cloud amount neural network for estimating 3D cloud from geostationary satellite imager
    Lin, Han
    Li, Jun
    Min, Min
    Zhang, Feng
    Wang, Keyue
    Wu, Qunyong
    REMOTE SENSING OF ENVIRONMENT, 2025, 318
  • [8] Neural-Network based algorithm for ice concentration retrievals from satellite passive microwave data
    Bobylev, Leonid P.
    Zabolotskikh, Elizaveta V.
    Mitnik, Leonid M.
    Johannessenn, Ola M.
    2008 MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT, 2008, : 172 - 175
  • [9] Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques
    Li, Ainong
    Liang, Shunlin
    Wang, Angsheng
    Qin, Jun
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (10): : 1149 - 1157
  • [10] Comparison of statistical and artificial neural network techniques for estimating past sea surface temperatures from planktonic foraminifer census data
    Malmgren, BA
    Kucera, M
    Nyberg, J
    Waelbroeck, C
    PALEOCEANOGRAPHY, 2001, 16 (05): : 520 - 530