SIZE AND TEMPERATURE DEPENDENCE OF THE SURFACE PLASMON RESONANCE IN SILVER NANOPARTICLES

被引:0
|
作者
Yeshchenko, O. A. [1 ]
Dmitruk, I. M. [1 ]
Alexeenko, A. A. [2 ]
Kotko, A. V. [3 ]
Verdal, J. [4 ]
Pinchuk, A. O. [4 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Phys Dept, 4 Prosp Acad Glushkov, UA-03127 Kiev, Ukraine
[2] Gomel State Tech Univ, Lab Tech Ceram & Silicates, Gomel, BELARUS
[3] IM Frantsevich Inst Problems Mat Sci, Gomel 03680, BELARUS
[4] Univ Colorado, Dept Phys & Energy Sci, Colorado Springs, CO 80933 USA
来源
UKRAINIAN JOURNAL OF PHYSICS | 2012年 / 57卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The size and temperature dependences of the surface plasmon energy are studied for silver nanoparticles embedded in a silica host matrix in the size range 11-30 nm and in the temperature interval 293-650 K. It is revealed that the surface plasmon energy in studied silver nanoparticles depends on the size and the temperature of nanoparticles. As the size of nanoparticles decreases or the temperature increases, the surface plasmon resonance shifts to the red side. When the size of nanoparticles decreases, the rate of scattering of the conduction electrons on the nanoparticle surface increases, which results in a nonlinear red shift of the surface plasmon resonance. The temperature dependence of the red shift is linear for larger nanoparticles and becomes nonlinear for smaller ones. It is shown that the volume thermal expansion of nanoparticles leads to a red shift of the surface plasmon resonance, as the temperature increases. It is revealed that the thermal volume expansion coefficient depends on the size and the temperature. It increases with decrease of the nanoparticle size and with increase of the temperature.
引用
收藏
页码:266 / 277
页数:12
相关论文
共 50 条
  • [11] SURFACE-PLASMON DISPERSION AND SIZE DEPENDENCE OF MIE RESONANCE - SILVER VERSUS SIMPLE METALS
    LIEBSCH, A
    PHYSICAL REVIEW B, 1993, 48 (15): : 11317 - 11328
  • [12] Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers
    McClary, Felicia A.
    Gaye-Campbell, Shauna
    Ting, Andy Yuen Hai
    Mitchell, James W.
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (02)
  • [13] Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers
    Felicia A. McClary
    Shauna Gaye-Campbell
    Andy Yuen Hai Ting
    James W. Mitchell
    Journal of Nanoparticle Research, 2013, 15
  • [14] Temperature dependence of the optical characteristics and surface plasmon resonance of core-shell nanoparticles
    Daneshfar, Nader
    PHYSICS OF PLASMAS, 2014, 21 (06)
  • [15] Size effect of Ag nanoparticles on surface plasmon resonance
    Lee, Kuang-Che
    Lin, Su-Jien
    Lin, Chih-Hong
    Tsai, Chih-Song
    Lu, Yu-Jen
    SURFACE & COATINGS TECHNOLOGY, 2008, 202 (22-23): : 5339 - 5342
  • [16] Silver Metallic Nanoparticles with Surface Plasmon Resonance: Synthesis and Characterizations
    M. Ider
    K. Abderrafi
    A. Eddahbi
    S. Ouaskit
    A. Kassiba
    Journal of Cluster Science, 2017, 28 : 1051 - 1069
  • [17] Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects
    Raza, Soren
    Yan, Wei
    Stenger, Nicolas
    Wubs, Martijn
    Mortensen, N. Asger
    OPTICS EXPRESS, 2013, 21 (22): : 27344 - 27355
  • [18] Surface Plasmon Resonance of Silver Nanoparticles: Synthesis, Characterization, and Applications
    Ismail, Rusul K.
    Mubarak, Tahseen H.
    Al-Haddad, Raad M. S.
    JOURNAL OF BIOCHEMICAL TECHNOLOGY, 2019, 10 (02) : 62 - 64
  • [19] Preparation and Surface Plasmon Resonance of Polymer/Silver Hybrid Nanoparticles
    Eo, Kyoungbok
    Kim, Myoeum
    Ihm, Hyunjoon
    Jeong, Soyeon
    Kwon, Yong Ku
    POLYMER-KOREA, 2018, 42 (01) : 93 - 98
  • [20] Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS
    Raza, Soren
    Stenger, Nicolas
    Kadkhodazadeh, Shima
    Fischer, Soren V.
    Kostesha, Natalie
    Jauho, Antti-Pekka
    Burrows, Andrew
    Wubs, Martijn
    Mortensen, N. Asger
    NANOPHOTONICS, 2013, 2 (02) : 131 - 138