COMPLETIONS OF ORTHOMODULAR LATTICES

被引:21
|
作者
BRUNS, G
GREECHIE, R
HARDING, J
RODDY, M
机构
[1] MCMASTER UNIV, DEPT MATH, HAMILTON L8S 4K1, ONTARIO, CANADA
[2] KANSAS STATE UNIV AGR & APPL SCI, DEPT MATH, MANHATTAN, KS 66506 USA
[3] BRANDON UNIV, DEPT MATH, BRANDON R7A 6A9, MANITOBA, CANADA
关键词
ORTHOMODULAR LATTICE; VARIETY OF ALGEBRAS; MACNEILLE COMPLETION;
D O I
10.1007/BF00383174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If K is a variety of orthomodular lattices generated by a finite orthomodular lattice the MacNeille completion of every algebra in K again belongs to K.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
  • [41] COMMUTATORS AND DECOMPOSITIONS OF ORTHOMODULAR LATTICES
    CHEVALIER, G
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1989, 6 (02): : 181 - 194
  • [42] Residuated Structures and Orthomodular Lattices
    Fazio, D.
    Ledda, A.
    Paoli, F.
    STUDIA LOGICA, 2021, 109 (06) : 1201 - 1239
  • [43] Associativity of operations on orthomodular lattices
    Gabriels, Jeannine J. M.
    Navara, Mirko
    MATHEMATICA SLOVACA, 2012, 62 (06) : 1069 - 1078
  • [44] Congruence relations in orthomodular lattices
    Chevalier, G
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 197 - 225
  • [45] MODULAR PAIRS IN ORTHOMODULAR LATTICES
    SCHREINER, EA
    PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (03) : 519 - +
  • [46] ON LOCALLY FINITE ORTHOMODULAR LATTICES
    Buresova, Dominika
    Ptak, Pavel
    MATHEMATICA SLOVACA, 2023, 73 (02) : 545 - 549
  • [47] Remarks on concrete orthomodular lattices
    Harding, J
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (10) : 2149 - 2168
  • [48] DIRECT DECOMPOSITIONS OF ORTHOMODULAR LATTICES
    CARREGA, JC
    CHEVALIER, G
    MAYET, R
    ALGEBRA UNIVERSALIS, 1990, 27 (04) : 480 - 496
  • [49] An implicational logic for orthomodular lattices
    Chajda I.
    Cirulis J.
    Acta Scientiarum Mathematicarum, 2016, 82 (3-4): : 383 - 394
  • [50] Residuated Structures and Orthomodular Lattices
    D. Fazio
    A. Ledda
    F. Paoli
    Studia Logica, 2021, 109 : 1201 - 1239