A MIN-MAX SOLUTION OF AN INVENTORY PROBLEM

被引:0
|
作者
SCARF, H
机构
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
引用
收藏
页码:352 / 352
页数:1
相关论文
共 50 条
  • [41] New algorithm for the min-max problem with nonlinear constraints
    Shang, Jincheng
    Zang, Yongchuan
    Du, Jiang
    Yu, Yin
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 1996, 24 (Suppl 1):
  • [42] Min-Max Propagation
    Srinivasa, Christopher
    Givoni, Inmar
    Ravanbakhsh, Siamak
    Frey, Brendan J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [43] A min-max problem of optimal actuator placement for lifting
    Beiner, L
    IUTAM SYMPOSIUM ON OPTIMIZATION OF MECHANICAL SYSTEMS, 1996, 43 : 9 - 16
  • [44] Min-max problem for evaluating the form error of a circle
    Jywe, Wen-Yuh
    Liu, Chien-Hong
    Chen, Cha'o-Kuang
    Measurement: Journal of the International Measurement Confederation, 1999, 26 (04): : 273 - 282
  • [45] Approximation schemes for the Min-Max Starting Time Problem
    Epstein, L
    Tassa, T
    ACTA INFORMATICA, 2004, 40 (09) : 657 - 674
  • [46] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    Munoz de la Pena, D.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 6210 - 6215
  • [47] Approximation schemes for the Min-Max Starting Time Problem
    Leah Epstein
    Tamir Tassa
    Acta Informatica, 2004, 40 : 657 - 674
  • [48] Partial inverse min-max spanning tree problem
    Tayyebi, Javad
    Sepasian, Ali Reza
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 1075 - 1091
  • [49] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    de la Pena, D. Munoz
    Camacho, E. F.
    AUTOMATICA, 2007, 43 (04) : 693 - 700
  • [50] A Memetic Approach to the Solution of Constrained Min-Max Problems
    Filippi, Gianluca
    Vasile, Massimiliano
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 506 - 513