ON THE CAUCHY PRINCIPAL VALUE OF THE SURFACE INTEGRAL IN THE BOUNDARY INTEGRAL-EQUATION OF 3D ELASTICITY

被引:3
|
作者
MANTIC, V [1 ]
PARIS, F [1 ]
机构
[1] ETS INGN IND,E-41012 SEVILLE,SPAIN
关键词
CAUCHY PRINCIPAL VALUE; STRONGLY SINGULAR SURFACE INTEGRAL; BOUNDARY INTEGRAL EQUATIONS; ELASTICITY; BOUNDARY ELEMENT METHOD;
D O I
10.1016/0955-7997(93)90056-Q
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple demonstration of the existence of the Cauchy principal value (CPV) of the strongly singular surface integral in the Somigliana Identity at a non-smooth boundary point is presented. First a regularization of the strongly singular integral by analytical integration of the singular term in the radial direction in pre-image planes of smooth surface patches is carried out. Then it is shown that the sum of the angular integrals of the characteristic of the tractions of the Kelvin fundamental solution is zero, a formula for the transformation of angles between the tangent plane of a surface patch and the pre-image plane at smooth mapping of the surface patch being derived for this purpose.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 50 条
  • [31] DATA ON INTEGRAL-EQUATION OF ELASTICITY THEORY IN AN INFINITE SYSTEM
    POPOV, GY
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1972, 36 (04): : 672 - &
  • [32] The boundary integral equation for 3D general anisotropic thermoelasticity
    Shiah, Y.C.
    Tan, C.L.
    CMES - Computer Modeling in Engineering and Sciences, 2014, 102 (06): : 425 - 447
  • [33] The Boundary Integral Equation for 3D General Anisotropic Thermoelasticity
    Shiah, Y. C.
    Tan, C. L.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 102 (06): : 425 - 447
  • [34] Galerkin Boundary Integral Analysis for the 3D Helmholtz Equation
    Swager, M. R.
    Gray, L. J.
    Fata, S. Nintcheu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (03): : 297 - 314
  • [35] Galerkin boundary integral analysis for the 3D helmholtz equation
    Swager, M.R.
    Gray, L.J.
    Fata, S. Nintcheu
    CMES - Computer Modeling in Engineering and Sciences, 2010, 58 (03): : 297 - 314
  • [36] INTEGRAL-EQUATION SOLUTION OF PLANE PROBLEM OF THEORY OF ELASTICITY
    KATSIKADELIS, JT
    MASSALAS, CV
    TZIVANIDIS, GJ
    MECHANICS RESEARCH COMMUNICATIONS, 1977, 4 (03) : 199 - 208
  • [37] ON THE INTEGRAL-EQUATION APPROACH TO THE TRANSFORMATION AND INHOMOGENEITY PROBLEMS OF ELASTICITY
    JOHNSON, WC
    LEE, JK
    EARMME, YY
    BARNETT, DM
    JOURNAL OF METALS, 1980, 32 (12): : 15 - 15
  • [38] INTEGRAL-EQUATION APPROACH TO DISPLACEMENT PROBLEMS OF CLASSICAL ELASTICITY
    MAITI, M
    MAKAN, GR
    QUARTERLY OF APPLIED MATHEMATICS, 1972, 29 (04) : 557 - &
  • [39] SOLUTION OF AN INTEGRAL-EQUATION OF LIFTING SURFACE
    POLYAKHOV, NN
    MELNIKOVA, OF
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1978, (01): : 123 - 128
  • [40] INTEGRAL-EQUATION SOLUTIONS TO SURFACE IRRIGATION
    REDDY, JM
    JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, 1989, 42 (04): : 251 - 265