THE BIFURCATION OF THE UNSTABLE PERIODIC-ORBITS IN BOUNDED AND UNBOUNDED 3-DISK BILLIARDS

被引:5
|
作者
SANO, MM
机构
[1] Dept. of Appl. Phys., Tokyo Inst. of Technol.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 14期
关键词
D O I
10.1088/0305-4470/27/14/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The bifurcation of unstable periodic orbits (UPOS) in bounded and unbounded billiards are investigated. The billiard systems studied in this paper consist of three disks and have C3v symmetry. It is found numerically that these systems have essentially two different types of bifurcation for changing the structure of the upos. The first type of bifurcation is caused by the tangential collision of the trajectory with a convex boundary segment. The second type of bifurcation is caused by the collision of the trajectory with a vertex point, where two smooth boundary segments meet at a finite angle. The vertex points on the boundary play the central geometrical role of organizing the upos in these billiard systems.
引用
收藏
页码:4791 / 4803
页数:13
相关论文
共 50 条
  • [21] BIFURCATION OF PERIODIC-ORBITS FROM A SYMMETRICAL HOMOCLINIC CYCLE
    SCHEEL, A
    CHOSSAT, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (01): : 49 - 54
  • [23] Prevalence of marginally unstable periodic orbits in chaotic billiards
    Altmann, E. G.
    Friedrich, T.
    Motter, A. E.
    Kantz, H.
    Richter, A.
    PHYSICAL REVIEW E, 2008, 77 (01):
  • [24] TRACKING UNSTABLE PERIODIC-ORBITS IN A BRONZE RIBBON EXPERIMENT
    DRESSLER, U
    RITZ, T
    SCHWEINSBERG, ASZ
    DOERNER, R
    HUBINGER, B
    MARTIENSSEN, W
    PHYSICAL REVIEW E, 1995, 51 (03): : 1845 - 1848
  • [25] STATISTICAL PROPERTIES OF UNSTABLE PERIODIC-ORBITS IN THE STADIUM BILLIARD
    AKIYAMA, S
    KOGA, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1995, 28 : S384 - S389
  • [26] SECURE COMMUNICATIONS AND UNSTABLE PERIODIC-ORBITS OF STRANGE ATTRACTORS
    ABARBANEL, HDI
    LINSAY, PS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10): : 643 - 645
  • [27] METHODS FOR LOCATING PERIODIC-ORBITS IN HIGHLY UNSTABLE SYSTEMS
    FARANTOS, SC
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1995, 341 : 91 - 100
  • [28] UNSTABLE PERIODIC-ORBITS AND THE DIMENSIONS OF MULTIFRACTAL CHAOTIC ATTRACTORS
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW A, 1988, 37 (05): : 1711 - 1724
  • [29] HISTORY-DEPENDENT CONTROL OF UNSTABLE PERIODIC-ORBITS
    ALSING, PM
    GAVRIELIDES, A
    KOVANIS, V
    PHYSICAL REVIEW E, 1994, 50 (03): : 1968 - 1977
  • [30] GEOMETRIC-METHOD FOR STABILIZING UNSTABLE PERIODIC-ORBITS
    TOROCZKAI, Z
    PHYSICS LETTERS A, 1994, 190 (01) : 71 - 78