VARIANCE ESTIMATION AND CHANGE POINT DETECTION FOR THE HYBRIDS OF EMPIRICAL AND PARTIAL-SUM PROCESSES

被引:0
|
作者
Alvarez-Andrade, S. [1 ]
机构
[1] Univ Technol Compiegne, LMAC, BP 529, F-60205 Compiegne, France
关键词
empirical process; Gaussian process; partial sum; strong approximation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with a variance estimator based on invariance principle for the so-called hybrids of empirical and partial sums processes defined as in (1), as well as in the study on a possible change in the variance in an At Most One Change (AMOC) spirit, and a study of the domain of attraction for this process.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 50 条
  • [31] POINT PROCESS AND PARTIAL SUM CONVERGENCE FOR WEAKLY DEPENDENT RANDOM-VARIABLES WITH INFINITE VARIANCE
    DAVIS, RA
    HSING, TL
    ANNALS OF PROBABILITY, 1995, 23 (02): : 879 - 917
  • [32] CHANGE-POINT DETECTION FOR LEVY PROCESSES
    Figueroa-Lopez, Jose E.
    Olafsson, Sveinn
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (02): : 717 - 738
  • [33] Optimal change point detection in Gaussian processes
    Keshavarz, Hossein
    Scott, Clayton
    Nguyen, XuanLong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 193 : 151 - 178
  • [34] Estimation of a change point in the variance function based on the 2-distribution
    Huh, Jib
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (17) : 4937 - 4968
  • [35] Change Point Estimation of Location Parameter in Multistage Processes
    Niaki, Seyed Taghi Akhavan
    Davoodi, Mehdi
    Torkamani, Elnaz Asghari
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 622 - 626
  • [36] Change Point Detection by Sparse Parameter Estimation
    Neubauer, Jiri
    Vesely, Vitezslav
    INFORMATICA, 2011, 22 (01) : 149 - 164
  • [37] Estimation of change point for switching fractional diffusion processes
    Mishra, M. N.
    Rao, B. L. S. Prakasa
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (03) : 429 - 449
  • [38] Empirical likelihood for change point detection in autoregressive models
    Ramadha D. Piyadi Gamage
    Wei Ning
    Journal of the Korean Statistical Society, 2021, 50 : 69 - 97
  • [39] Empirical likelihood for change point detection in autoregressive models
    Gamage, Ramadha D. Piyadi
    Ning, Wei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (01) : 69 - 97
  • [40] SUPERVISED KERNEL CHANGE POINT DETECTION WITH PARTIAL ANNOTATIONS
    Truong, Charles
    Oudre, Laurent
    Vayatis, Nicolas
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3147 - 3151