GLACIAL-INTERGLACIAL CHANGES IN MOISTURE SOURCES FOR GREENLAND - INFLUENCES ON THE ICE CORE RECORD OF CLIMATE

被引:183
|
作者
CHARLES, CD
RIND, D
JOUZEL, J
KOSTER, RD
FAIRBANKS, RG
机构
[1] GODDARD INST SPACE STUDIES, NEW YORK, NY 10028 USA
[2] CEA, DSM, CE SACLAY, MODELISAT CLIMAT & ENVIRONNEMENT LAB, F-91191 GIF SUR YVETTE, FRANCE
[3] CNRS, GLACIOL & GEOPHYS ENVIRONNEMENT LAB, F-38402 ST MARTIN DHERES, FRANCE
[4] NASA, GODDARD SPACE FLIGHT CTR, HYDROL SCI BRANCH, GREENBELT, MD 20904 USA
[5] COLUMBIA UNIV, LAMONT DOHERTY GEOL OBSERV, PALISADES, NY 10964 USA
[6] COLUMBIA UNIV, DEPT GEOL SCI, NEW YORK, NY 10025 USA
关键词
D O I
10.1126/science.263.5146.508
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large, abrupt shifts in the O-18/O-16 ratio found in Greenland ice must reflect real features of the climate system variability. These isotopic shifts can be viewed as a result of air temperature fluctuations, but determination of the cause of the changes-the most crucial issue for future climate concerns-requires a detailed understanding of the controls on isotopes in precipitation. Results from general circulation model experiments suggest that the sources of Greenland precipitation varied with different climate states, allowing dynamic atmospheric mechanisms for influencing the ice core isotope shifts.
引用
收藏
页码:508 / 511
页数:4
相关论文
共 50 条
  • [31] PALEOCLIMATOLOGY AND PALEO-OCEANOGRAPHY OF THE NORWEGIAN AND GREENLAND SEAS - GLACIAL-INTERGLACIAL CONTRASTS
    KELLOGG, TB
    BOREAS, 1980, 9 (02) : 115 - 137
  • [32] Iron in the NEEM ice core relative to Asian loess records over the last glacial-interglacial cycle
    Xiao, Cunde
    Du, Zhiheng
    Handley, Mike J.
    Mayewski, Paul A.
    Cao, Junji
    Schuepbach, Simon
    Zhang, Tong
    Petit, Jean-Robert
    Li, Chuanjin
    Han, Yeongcheol
    Li, Yuefang
    Ren, Jiawen
    NATIONAL SCIENCE REVIEW, 2021, 8 (07)
  • [33] THE INTERGLACIAL GLACIAL RECORD AT THE MOUTH OF SCORESBY SUND, EAST GREENLAND
    MANGERUD, J
    FUNDER, S
    BOREAS, 1994, 23 (04) : 349 - 358
  • [34] Potential glacial-interglacial changes in stable carbon isotope ratios of methane sources and sink fractionation
    Schaefer, Hinrich
    Whiticar, Michael J.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2008, 22 (01)
  • [35] Glacial-interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru)
    Gosling, William D.
    Bush, Mark B.
    Hanselman, Jennifer A.
    Chepstow-Lusty, Alex
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2008, 259 (01) : 35 - 50
  • [36] Glacial-interglacial variations in central East Antarctic ice accumulation rates
    Siegert, MJ
    QUATERNARY SCIENCE REVIEWS, 2003, 22 (5-7) : 741 - 750
  • [37] Vegetation and climate changes in the South Eastern Mediterranean during the Last Glacial-Interglacial cycle (86 ka): new marine pollen record
    Langgut, D.
    Almogi-Labin, A.
    Bar-Matthews, M.
    Weinstein-Evron, M.
    QUATERNARY SCIENCE REVIEWS, 2011, 30 (27-28) : 3960 - 3972
  • [38] Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau
    Kohfeld, KE
    Harrison, SP
    QUATERNARY SCIENCE REVIEWS, 2003, 22 (18-19) : 1859 - 1878
  • [39] Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California
    D'Arcy, Mitch
    Roda-Boluda, Duna C.
    Whittaker, Alexander C.
    QUATERNARY SCIENCE REVIEWS, 2017, 169 : 288 - 311
  • [40] A model for large glacial-interglacial climate-induced changes in dust and sea salt concentrations in deep ice cores (central Antarctica): palaeoclimatic implications and prospects for refining ice core chronologies
    Petit, J. R.
    Delmonte, B.
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2009, 61 (05): : 768 - 790