ON THE EXPANSION OF COMBINATORIAL POLYTOPES

被引:0
|
作者
MIHAIL, M
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Strong expansion properties have been established for several classes of graphs that can be expressed as the 1-skeletons of 0-1 polytopes. These include graphs associated with, matchings, order ideals, independent sets, and balanced matroids (e.g. for the graphic matroid). The question whether these are examples of a more general phenomenon has been raiseD: ''Do all 0-1 polytopes have cutset expansion at least 1 ?'' A positive answer to the above question (even in weaker or more special form), implies efficient randomized algorithms to approximate a vast class of NP-hard counting problems.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 50 条
  • [21] Combinatorial coefficients and the mixed volume of polytopes
    Gelfond, OA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (03) : 207 - 208
  • [22] Hypergraphic polytopes: combinatorial properties and antipode
    Benedetti, Carolina
    Bergeron, Nantel
    Machacek, John
    JOURNAL OF COMBINATORICS, 2019, 10 (03) : 515 - 544
  • [23] Combinatorial mutations and block diagonal polytopes
    Clarke, Oliver
    Higashitani, Akihiro
    Mohammadi, Fatemeh
    COLLECTANEA MATHEMATICA, 2022, 73 (02) : 305 - 335
  • [24] Optimal Bound on the Combinatorial Complexity of Approximating Polytopes
    Arya, Rahul
    Arya, Sunil
    da Fonseca, Guilherme D.
    Mount, David M.
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 786 - 805
  • [25] Exponential Lower Bounds for Polytopes in Combinatorial Optimization
    Fiorini, Samuel
    Massar, Serge
    Pokutta, Sebastian
    Tiwary, Hans Raj
    De Wolf, Ronald
    JOURNAL OF THE ACM, 2015, 62 (02)
  • [26] 2 COMBINATORIAL PROPERTIES OF A CLASS OF SIMPLICIAL POLYTOPES
    LEE, CW
    ISRAEL JOURNAL OF MATHEMATICS, 1984, 47 (04) : 261 - 269
  • [27] Hirsch polytopes with exponentially long combinatorial segments
    Jean-Philippe Labbé
    Thibault Manneville
    Francisco Santos
    Mathematical Programming, 2017, 165 : 663 - 688
  • [28] Possibilities determine the combinatorial structure of probability polytopes
    Abramsky, Samson
    Barbosa, Rui Soares
    Kishida, Kohei
    Lal, Raymond
    Mansfield, Shane
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2016, 74 : 58 - 65
  • [29] COMBINATORIAL INSCRIBABILITY OBSTRUCTIONS FOR HIGHER DIMENSIONAL POLYTOPES
    Doolittle, Joseph
    Labbe, Jean-Philippe
    Lange, Carsten E. M. C.
    Sinn, Rainer
    Spreer, Jonathan
    Ziegler, Guenter M.
    MATHEMATIKA, 2020, 66 (04) : 927 - 953
  • [30] A COMBINATORIAL MODEL FOR COMPUTING VOLUMES OF FLOW POLYTOPES
    Benedetti, Carolina
    Gonzalez D'Leon, Rafael S.
    Hanusa, Christopher R. H.
    Harris, Pamela E.
    Khare, Apoorva
    Morales, Alejandro H.
    Yip, Martha
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) : 3369 - 3404