On property (aω) and hypercyclic/supercyclic operators

被引:0
|
作者
Akrym, Abdellah [1 ]
El Bakkali, Abdeslam [1 ]
Faouzi, Abdelkhalek [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, El Jadida, Morocco
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 48期
关键词
a-Weyl's theorem; a-Browder's theorem; property(omega); property(a omega); hypercyclic/supercyclic operators; single valued extension property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that property (a omega) holds for the adjoint of hypercyclic/supercyclic operator. Also, we characterize hypercyclic/ supercyclic operators satisfying the property (a omega). We establish that for a hypercyclic/ supercyclic operators, the property (a omega) holds if and only if property (omega) holds, if and only if a-Weyl's theorem holds.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [21] Semi-Fredholm theory:: Hypercyclic and supercyclic subspaces
    González, M
    León-Saavedra, F
    Montes-Rodríguez, A
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 : 169 - 189
  • [22] Hypercyclic operators are subspace hypercyclic
    Bamerni, Nareen
    Kadets, Vladimir
    Kilicman, Adem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) : 1812 - 1815
  • [23] ε-hypercyclic operators that are not δ-hypercyclic for δ < ε
    Bayart, Frederic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [24] Weakly supercyclic operators
    Sanders, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (01) : 148 - 159
  • [25] On the set of supercyclic operators
    Alves, Thiago R.
    Souza, Gustavo C.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2483 - 2494
  • [26] Multi-hypercyclic operators are hypercyclic
    Alfredo Peris
    Mathematische Zeitschrift, 2001, 236 : 779 - 786
  • [27] Multi-hypercyclic operators are hypercyclic
    Peris, A
    MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (04) : 779 - 786
  • [28] CESARO-HYPERCYCLIC AND HYPERCYCLIC OPERATORS
    El Berrag, Mohammed
    Tajmouati, Abdelaziz
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 557 - 563
  • [29] $ \mathbb{C} $-supercyclic versus $ \mathbb{R}^+ $-supercyclic operators
    T. Bermúdez
    A. Bonilla
    A. Peris
    Archiv der Mathematik, 2002, 79 : 125 - 130
  • [30] C-supercyclic versus R+-supercyclic operators
    Bermúdez, T
    Bonilla, A
    Peris, A
    ARCHIV DER MATHEMATIK, 2002, 79 (02) : 125 - 130