IN SITU PARAMETER ESTIMATION OF SYNCHRONOUS MACHINES USING GENETIC ALGORITHM METHOD

被引:0
|
作者
Srinivasan, Gopalakrishnan Kalarikovilagam [1 ]
Srinivasan, Hosimin Thilagar [1 ]
机构
[1] Anna Univ, Fac Elect Engn, Dept Elect & Elect Engn, Sardar Patel Rd, Madras 600025, Tamil Nadu, India
关键词
Equivalent circuit model; genetic algorithm; parameter estimation; synchronous machines;
D O I
10.15598/aeee.v14i3.1707
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents an in situ parameter estimation method to determine the equivalent circuit parameters of the Synchronous Machines. The parameters of synchronous generator, both cylindrical rotor and salient pole rotor, are estimated based on the circuit model. Genetic algorithm based parameter estimation technique is adopted, where only one set of in-situ measured load test data is used. Conventional methods viz., EMF, MMF, Potier triangle method uses rated voltage and rated current obtained from more than one operating condition to determine the parameters. However, Genetic Algorithm (GA) based method uses the working voltage and load current of a single operating point obtained from in-situ measured load test data, i.e. without isolation or disturbing the normal operating condition of the machine to estimate the parameters. The test results of the GA-based parameter estimation method are found to be closer to direct load test results and better than conventional methods.
引用
收藏
页码:254 / 266
页数:13
相关论文
共 50 条
  • [31] Parameter Estimation for Synchronous Machines Using Numerical Pulse Test within Finite Element Analysis
    Makela, Olli
    Repo, Anna-Kaisa
    Arkkio, Antero
    ICEM: 2008 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES, VOLS 1- 4, 2009, : 52 - 56
  • [32] A Novel Parameter Estimation Method for Boltzmann Machines
    Takenouchi, Takashi
    NEURAL COMPUTATION, 2015, 27 (11) : 2423 - 2446
  • [33] Application of Deep Learning in Parameter Estimation of Permanent Magnet Synchronous Machines
    Bui, Minh Xuan
    Dutta, Rukmi
    Rahman, Faz
    IEEE ACCESS, 2024, 12 : 40710 - 40721
  • [34] Parameter Estimation in Complex Plankton Models using the Boundary Eigenvalue Nudging - Genetic Algorithm (BENGA) Method
    Cropp, R. A.
    Bates, M. L.
    Hawker, D. W.
    Norbury, J.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 1233 - 1239
  • [35] Parameter estimation of three-winding transformers using genetic algorithm
    Thilagar, SH
    Rao, GS
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2002, 15 (05) : 429 - 437
  • [36] Parameter Estimation of Space-Time Model Using Genetic Algorithm
    Halim, S.
    Bisono, I. N.
    Sunyoto, D.
    Gendo, I.
    2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2009, : 1371 - 1375
  • [37] Estimation of Vector Autoregressive Model's Parameter Using Genetic Algorithm
    Kristianda, Febrian
    Irhamah
    Fithriasari, Kartika
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT INFORMATICS (SAIN), 2018, : 72 - 77
  • [38] Kinetic parameter estimation from compartment models using a genetic algorithm
    Murase, K
    Mochizuki, T
    Kikuchi, T
    Ikezoe, J
    NUCLEAR MEDICINE COMMUNICATIONS, 1999, 20 (10) : 925 - 932
  • [39] Parameter Estimation of Nonlinear Nitrate Prediction Model Using Genetic Algorithm
    Wu, Rui
    Painumkal, Jose T.
    Volk, John M.
    Liu, Siming
    Louis, Sushil J.
    Tyler, Scott
    Dascalu, Sergiu M.
    Harris, Frederick C., Jr.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1893 - 1899
  • [40] Parameter Estimation for the Phenomenological Model of Hysteresis Using Efficient Genetic Algorithm
    Xue Xiaomin
    Zhang Ling
    Sun Qing
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 713 - +