ON THE BEST CONSTANT IN WEIGHTED INEQUALITIES FOR RIEMANN-LIOUVILLE INTEGRALS

被引:16
|
作者
MANAKOV, VM
机构
[1] Department of Mathematics, Politechnical Institute, Khabarovsk, 680035
关键词
D O I
10.1112/blms/24.5.442
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 1 less-than-or-equal-to k < infinity and 1 < p less-than-or-equal-to q < infinity, the problem of finding the best constant C(p,q) in the weighted inequality (integral-infinity/0 \I(k)f(x)\q\u(x)\q dx)1/q less-than-or-equal-to C(p,q)(integral-infinity/0 \f(x)\p\v(x)\p dx)1/p, involving the Riemann-Liouville integrals of the form I(k)f(x) = 1/GAMMA(k) integral-x/0 (x-1)k-1f(t)dt, is considered.
引用
收藏
页码:442 / 448
页数:7
相关论文
共 50 条
  • [41] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Zhang, Yuruo
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [42] NEW EXTENSIONS OF THE HERMITE-HADAMARD INEQUALITIES INVOLVING RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Budak, H.
    Kara, H.
    Sarikaya, M. Z.
    Kiris, M. E.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 665 - 678
  • [43] A new class of fractional inequalities through the convexity concept and enlarged Riemann-Liouville integrals
    Hyder, Abd-Allah
    Barakat, Mohamed A.
    Soliman, Ahmed H.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [44] Inequalities with parameters for twice-differentiable functions involving Riemann-Liouville fractional integrals
    Hezenci, Fatih
    FILOMAT, 2024, 38 (09) : 3275 - 3294
  • [45] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725
  • [46] Inequalities for Riemann-Liouville operator involving suprema
    Dmitry V. Prokhorov
    Collectanea mathematica, 2010, 61 : 263 - 276
  • [47] Inequalities for Riemann-Liouville operator involving suprema
    Prokhorov, Dmitry V.
    COLLECTANEA MATHEMATICA, 2010, 61 (03) : 263 - 276
  • [48] Weighted Hardy-Littlewood-Sobolev-type inequality for ψ-Riemann-Liouville fractional integrals
    Ledesma, Cesar E. Torres
    Sousa, J. Vanterler da C.
    Cruz, Amado M.
    ILLINOIS JOURNAL OF MATHEMATICS, 2023, 67 (01) : 13 - 32
  • [49] Diffusive representation of Riemann-Liouville fractional integrals and derivatives
    Guo, Yuxiang
    Ma, Baoli
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11335 - 11339
  • [50] Numerical Approximations of the Riemann-Liouville and Riesz Fractional Integrals
    Ciesielski, Mariusz
    Grodzki, Grzegorz
    INFORMATICA, 2024, 35 (01) : 21 - 46