ERGODICITY OF A CLASS OF COCYCLES OVER IRRATIONAL ROTATIONS

被引:11
|
作者
LEMANCZYK, M [1 ]
MAUDUIT, C [1 ]
机构
[1] UNIV LYON 1,DEPT MATH,F-69622 VILLEURBANNE,FRANCE
关键词
D O I
10.1112/jlms/49.1.124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that if alpha is irrational and phi is-an-element-of L2(S1) with phi(n) is-an-element-of .(1/n) then for each m is-an-element-of Z\{0} the corresponding skew product (e2piix, e2piiy) bar arrow pointing right (e2pii(x+alpha), e2pii(phi(x)+mx+y) is ergodic. The rigidity of special flows over irrational rotations with roof functions whose Fourier coefficients are in .(1/n) is also shown.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 50 条
  • [21] ERGODICITY OF CERTAIN COCYCLES OVER CERTAIN INTERVAL EXCHANGES
    Ralston, David
    Troubetzkoy, Serge
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2523 - 2529
  • [22] Ergodicity of Rokhlin cocycles
    Lemanczyk, M
    Lesigne, E
    JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1): : 43 - 86
  • [23] A class of special flows over irrational rotations which is disjoint from mixing flows
    Fraçzek, K
    Lemanczyk, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1083 - 1095
  • [24] Ergodicity of Rokhlin cocycles
    Mariusz Lemańczyk
    Emmanuel Lesigne
    Journal d’Analyse Mathématique, 2001, 85 : 43 - 86
  • [25] Remarks on skew products over irrational rotations
    Lerman, LM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (11): : 3675 - 3689
  • [26] SPECTRAL PROPERTIES OF SKEW PRODUCTS OVER IRRATIONAL ROTATIONS
    RILEY, GW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (FEB): : 152 - 160
  • [27] ON WEYL SUMS AND SKEW PRODUCTS OVER IRRATIONAL ROTATIONS
    HELLEKALEK, P
    LARCHER, G
    THEORETICAL COMPUTER SCIENCE, 1989, 65 (02) : 189 - 196
  • [28] On the ergodicity of Weyl sum cocycles
    Greschonig, Gernot
    Nerurkar, Mahesh
    Volny, Dalibor
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1851 - 1863
  • [29] SMOOTH COCYCLES FOR AN IRRATIONAL ROTATION
    BAGGETT, L
    MERRILL, K
    ISRAEL JOURNAL OF MATHEMATICS, 1992, 79 (2-3) : 281 - 288
  • [30] Irrational Rotations and Differentiability
    Z. Buczolich
    U. B. Darji
    R. J. O'Malley
    Acta Mathematica Hungarica, 1998, 78 : 305 - 313