A CHAOS BASED REVITALIZATION OF LARGE RELIABILITY KNOWLEDGE BASES

被引:1
|
作者
DOHNAL, M
KVAPILIK, M
DOHNALOVA, J
VYKYDAL, J
机构
[1] Applied Information Technologies, 664 41 Troubsko, Ostopovice
关键词
D O I
10.1016/0026-2714(93)90486-I
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An interdependence among individual knowledge items makes any development of large reliability knowledge bases difficult. The key problem is to maintain a reasonable level of internal consistency in spite of heterogeneity of different knowledge items. A fairly general and efficient formal tools are presented in [1, 2]. They have been used for evaluation of an internal (in)consistency (represented e.g. by a level of chaos) of industrial knowledge bases. The only precondition for their application is an ability to distinguish between specific and general fuzzy items, A realistic case study (control valves) is presented in details.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [31] ScaLeKB: scalable learning and inference over large knowledge bases
    Yang Chen
    Daisy Zhe Wang
    Sean Goldberg
    The VLDB Journal, 2016, 25 : 893 - 918
  • [32] ANALYSIS, SYNTHESIS AND PARALLEL PROCESSING OF LARGE DATA AND KNOWLEDGE BASES
    POLYACHENKO, BE
    ANDON, FI
    GUNKO, OL
    DATA ANALYSIS, LEARNING SYMBOLIC AND NUMERIC KNOWLEDGE, 1989, : 519 - 530
  • [33] ScaLeKB: scalable learning and inference over large knowledge bases
    Chen, Yang
    Wang, Daisy Zhe
    Goldberg, Sean
    VLDB JOURNAL, 2016, 25 (06): : 893 - 918
  • [34] A Semantic Matching Strategy for Very Large Knowledge Bases Integration
    Rinaldi, Antonio M.
    Russo, Cristiano
    Madani, Kurosh
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2020, 15 (02) : 1 - 29
  • [35] Detecting Inconsistencies in Large First-Order Knowledge Bases
    Schulz, Stephan
    Sutcliffe, Geoff
    Urban, Josef
    Pease, Adam
    AUTOMATED DEDUCTION - CADE 26, 2017, 10395 : 310 - 325
  • [36] An assertion and alignment correction framework for large scale knowledge bases
    Chen, Jiaoyan
    Jimenez-Ruiz, Ernesto
    Horrocks, Ian
    Chen, Xi
    Myklebust, Erik Bryhn
    SEMANTIC WEB, 2023, 14 (01) : 29 - 53
  • [37] EFFICIENT MANAGEMENT OF TRANSITIVE RELATIONSHIPS IN LARGE DATA AND KNOWLEDGE BASES
    AGRAWAL, R
    BORGIDA, A
    JAGADISH, HV
    PROCEEDINGS OF THE 1989 ACM SIGMOD INTERNATIONAL CONFERENCE ON THE MANAGEMENT OF DATA, 1989, 18 : 253 - 262
  • [38] Iterative focusing for finding faults in large configurator knowledge bases
    Felfernig, A.
    Friedrich, G.E.
    Jannach, D.
    Stumptner, M.
    Zanker, M.
    OGAI Journal (Oesterreichische Gesellschaft fuer Artificial Intelligence), 2002, 21 (03): : 13 - 22
  • [39] Learning of OWL Class Descriptions on Very Large Knowledge Bases
    Hellmann, Sebastian
    Lehmann, Jens
    Auer, Soeren
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2009, 5 (02) : 25 - 48
  • [40] KB-PROLOG, A PROLOG FOR VERY LARGE KNOWLEDGE BASES
    BOCCA, J
    DAHMEN, M
    FREESTON, M
    MACARTNEY, G
    PEARSON, PJ
    PROCEEDINGS OF THE SEVENTH BRITISH NATIONAL CONFERENCE ON DATABASES ( BNCOD 7 ), 1989, : 163 - 184