On the connectivity of the direct product of graphs

被引:0
|
作者
Bresar, Bostjan [1 ]
Spacapan, Simon [2 ]
机构
[1] Univ Maribor, FEECS, Smetanova 17, Maribor 2000, Slovenia
[2] Univ Maribor, FME, Maribor 2000, Slovenia
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we show that the edge-connectivity lambda(G x H) of the direct product of graphs G and H is bounded below by min{lambda(G)|E(H)|,lambda(H)|E(G)|, delta(G x H)}and above by min{2 lambda(G)|E(H)|,2 lambda(H)|E(G)|, delta(G x H)}except in some special cases whenGis a relatively small bipartite graph, or both graphs are bipartite. Several upper bounds on thevertex-connectivity of the direct product of graphs are also obtained.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [31] On restricted edge connectivity of Cartesian product graphs
    Qin, Yingying
    Ou, Jianping
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 37 (07): : 65 - 70
  • [32] On restricted edge connectivity of Cartesian product graphs
    Qin, Yingying
    Ou, Jianping
    International Journal of Applied Mathematics and Statistics, 2013, 37 (07): : 65 - 70
  • [33] STATUS CONNECTIVITY INDICES OF CARTESIAN PRODUCT OF GRAPHS
    Kandan, P.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 747 - 754
  • [34] Proof of a conjecture on connectivity of Kronecker product of graphs
    Wang, Yun
    Wu, Baoyindureng
    DISCRETE MATHEMATICS, 2011, 311 (21) : 2563 - 2565
  • [35] On the path-connectivity of lexicographic product graphs
    Zhang, Shumin
    Ye, Chengfu
    ARS COMBINATORIA, 2015, 121 : 141 - 158
  • [36] On super edge-connectivity of product graphs
    Lue, Min
    Chen, Guo-Liang
    Xu, Xi-Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 900 - 306
  • [37] The edge-connectivity and restricted edge-connectivity of a product of graphs
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2444 - 2455
  • [38] On total coloring the direct product of cycles and bipartite direct product of graphs
    Castonguay, D.
    de Figueiredo, C. M. H.
    Kowada, L. A. B.
    Patrao, C. S. R.
    Sasaki, D.
    DISCRETE MATHEMATICS, 2023, 346 (06)
  • [39] Super connectivity of Kronecker product of complete bipartite graphs and complete graphs
    Ekinci, Gulnaz Boruzanli
    Kirlangic, Alpay
    DISCRETE MATHEMATICS, 2016, 339 (07) : 1950 - 1953
  • [40] Roman domination in direct product graphs and rooted product graphs1
    Martinez, Abel Cabrera
    Peterin, Iztok
    Yero, Ismael G.
    AIMS MATHEMATICS, 2021, 6 (10): : 11084 - 11096