A Note on Continued Fractions and Mock Theta Functions

被引:0
|
作者
Srivastava, Pankaj [1 ]
Gupta, Priya [1 ]
机构
[1] Motilal Nehru Natl Inst Technol, Dept Math, Allahabad 211004, Uttar Pradesh, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2016年 / 56卷 / 01期
关键词
Mock theta functions; Basic hypergeometric function; Continued fraction;
D O I
10.5666/KMJ.2016.56.1.173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mock theta functions are the most interesting topic mentioned in Ramanujan's Lost Notebook, due to its emerging application in the field of Number theory, Quantum invariants theory and etc. In the present research articles we have made an attempt to develop continued fractions representation of all the existing Mock theta functions.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [21] On mock theta functions of Gordon and McIntosh
    Kaur, H.
    Rana, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [22] ON FOUR NEW MOCK THETA FUNCTIONS
    Hu, Qiuxia
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 345 - 354
  • [23] Effective Congruences for Mock Theta Functions
    Andersen, Nickolas
    Friedlander, Holley
    Fuller, Jeremy
    Goodson, Heidi
    MATHEMATICS, 2013, 1 (03): : 100 - 110
  • [24] Radial limits of mock theta functions
    Kathrin Bringmann
    Larry Rolen
    Research in the Mathematical Sciences, 2
  • [25] Radial limits of mock theta functions
    Bringmann, Kathrin
    Rolen, Larry
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2015, 2 (01)
  • [26] Parity of coefficients of mock theta functions
    Wang, Liuquan
    JOURNAL OF NUMBER THEORY, 2021, 229 : 53 - 99
  • [27] A CHARACTERIZATION OF MODIFIED MOCK THETA FUNCTIONS
    Kac, Victor G.
    Wakimoto, Minoru
    TRANSFORMATION GROUPS, 2017, 22 (04) : 979 - 1004
  • [28] Congruences for partition functions related to mock theta functions
    Chern, Shane
    Hao, Li-Jun
    RAMANUJAN JOURNAL, 2019, 48 (02): : 369 - 384
  • [29] Congruences for partition functions related to mock theta functions
    Shane Chern
    Li-Jun Hao
    The Ramanujan Journal, 2019, 48 : 369 - 384
  • [30] A NOTE REGARDING CONTINUED FRACTIONS
    ROBBINS, N
    FIBONACCI QUARTERLY, 1995, 33 (04): : 311 - 312