Glycothermal Synthesis and Characterization of 3Y-TZP Nanoparticles

被引:3
|
作者
Song, Jeong-Hwan [1 ]
Lee, Ju-Hee [2 ]
机构
[1] PaiChai Univ, Dept Informat & Elect Mat Engn, Daejeon 302735, South Korea
[2] Daejeon Hlth Sci Coll, Dept Dent Lab Technol, Daejeon 300711, South Korea
来源
KOREAN JOURNAL OF MATERIALS RESEARCH | 2009年 / 19卷 / 08期
关键词
3Y-TZP; nanoparticle; glycothermal; 1,4-butanediol; Raman;
D O I
10.3740/MRSK.2009.19.8.412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) nanoparticles were synthesized by the glycothermal method under various reaction temperatures and times. The co-precipitated precursor of 3Y-TZP was prepared by adding NH4OH to starting solutions, and then the mixtures were placed in an autoclave reactor. Tetragonal yttria-doped zirconia nanoparticles were afforded through a glycothermal reaction at a temperature as low as 220 degrees C, using co-precipitated gels of ZrCl4 and YCl3 center dot 6H(2)O as precursors and 1,4butanediol as the solvent. The synthesized 3Y-TZP particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The 3Y-TZP particles have a stable tetragonal phase only at glycothermal temperatures above 200 degrees C. To investigate phase transition, the 3Y-TZP particles were heat treated from 400 to 1400 degrees C for 2 h. Raman analysis indicated that, after heat treatment, the tetragonal phase of the 3Y-TZP particles remained stable. The results of this study, therefore, suggest that 3Y-TZP powders can be prepared by the glycothermal method.
引用
收藏
页码:412 / 416
页数:5
相关论文
共 50 条
  • [31] Characterisation of Ce0.8Gd0.2O1.9/3Y-TZP composite electrolytes -: effects of weight % 3Y-TZP particles
    Ball, RJ
    Stevens, R
    JOURNAL OF MATERIALS SCIENCE, 2003, 38 (07) : 1413 - 1423
  • [32] Role of 3Y-TZP grain boundaries in glazing and layering
    Shahmiri, R.
    Standard, O. C.
    Hart, J. N.
    Gharagozlu, N.
    Bahmanrokh, G.
    Yin, Y.
    Mofarah, S. S.
    Adabifiroozjaei, E.
    Webster, R.
    Sorrell, C. C.
    DENTAL MATERIALS, 2024, 40 (12) : 2148 - 2156
  • [33] 3Y-TZP/CMS材料制备与性能
    王银玲
    陈森凤
    卢迪芬
    张立伟
    陈文伟
    稀有金属材料与工程, 2007, (S1) : 348 - 350
  • [34] Cavitation damage mechanisms in a superplastic zirconia(3Y-TZP)
    Hiraga, K
    Nakano, K
    SUPERPLASTICITY IN ADVANCED MATERIALS - ICSAM-97, 1997, 243-2 : 387 - 392
  • [35] Synergistic toughening mechanism in 3Y-TZP/Nb composites
    Bartolome, J. F.
    Gutierrez-Gonzalez, C. F.
    Pecharroman, C.
    Moya, J. S.
    ACTA MATERIALIA, 2007, 55 (17) : 5924 - 5933
  • [36] Fabrication of nano 3Y-TZP by spark plasma sintering
    Li, W
    Gao, L
    Guo, JK
    Miyamoto, H
    De la Torre, SD
    JOURNAL OF INORGANIC MATERIALS, 1999, 14 (06) : 985 - 988
  • [37] Alumina effect on the phase transformation of 3Y-TZP ceramics
    Elshazly, Ezzat S.
    Ali, M. El-Sayed
    El-Hout, S.M.
    Journal of Materials Science and Technology, 2008, 24 (06): : 873 - 877
  • [38] Failure investigation of carbon nanotube/3Y-TZP nanocomposites
    Sun, J
    Gao, L
    Iwasa, M
    Nakayama, T
    Niihara, K
    CERAMICS INTERNATIONAL, 2005, 31 (08) : 1131 - 1134
  • [39] 3Y-TZP粉体烧结性能研究
    孟兆强
    黄德信
    冯涛
    徐海芳
    蒋丹宇
    人工晶体学报, 2009, 38(S1) (S1) : 375 - 378
  • [40] Microstructural changes in 3Y-TZP induced by scratching and indentation
    Munoz-Tabares, J. A.
    Jimenez-Pique, E.
    Reyes-Gasga, J.
    Anglada, M.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (15) : 3919 - 3927