COMPLETE CUBIC SPLINE ESTIMATION OF NONPARAMETRIC REGRESSION-FUNCTIONS

被引:2
|
作者
FABIAN, V
机构
[1] Department of Statistics and Probability, Michigan State University, East Lansing, 48824-1027, MI
关键词
D O I
10.1007/BF01377628
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For regression functions on [0, 1] with bounded fourth derivatives, a complete cubic spline estimate is proposed and shown to have an asymptotically optimal error rate among all estimates. The error is measured by the supremum norm. © 1990 Springer-Verlag.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条
  • [21] Nonparametric Estimation of Edge Values of Regression Functions
    Galkowski, Tomasz
    Pawlak, Miroslaw
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, (ICAISC 2016), PT II, 2016, 9693 : 49 - 59
  • [22] NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTIONS WITH DISCRETE REGRESSORS
    Ouyang, Desheng
    Li, Qi
    Racine, Jeffrey S.
    ECONOMETRIC THEORY, 2009, 25 (01) : 1 - 42
  • [23] Nonparametric estimation of piecewise smooth regression functions
    Kohler, M
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (01) : 49 - 55
  • [24] SIMULTANEOUS ESTIMATION OF REGRESSION-FUNCTIONS FOR MARINE-CORPS TECHNICAL TRAINING SPECIALTIES
    DUNBAR, SB
    MAYEKAWA, S
    NOVICK, MR
    JOURNAL OF EDUCATIONAL STATISTICS, 1986, 11 (04): : 275 - 292
  • [25] REGRESSION-FUNCTIONS FOR TOWER SPRAY DRIERS
    KUBANTSEV, VI
    KHODOS, EY
    ARTEMEVA, SY
    STRAKHOV, AD
    GLASS AND CERAMICS, 1982, 39 (5-6) : 287 - 289
  • [26] OPTIMAL DESIGNS FOR NONPARAMETRIC ESTIMATION OF ZEROS OF REGRESSION FUNCTIONS
    Hlavka, Zdenek
    PROBASTAT '11: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON PROBABILITY AND STATISTICS: DEDICATED TO PROFESSOR LUBOMIR KUBACEK IN RECOGNITION OF HIS EIGHTIETH BIRTHDAY, 2012, 51 : 55 - 65
  • [27] RECURRENT STOCHASTIC ALGORITHMS WITH NONSMOOTH REGRESSION-FUNCTIONS
    KANIOVSKAYA, IY
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (07): : 74 - 77
  • [28] Nonparametric Estimation of Regression Functions in Point Process Models
    Sebastian Döhler
    Ludger Rüschendorf
    Statistical Inference for Stochastic Processes, 2003, 6 (3) : 291 - 307
  • [29] Nonparametric estimation of regression functions in the presence of irrelevant regressors
    Hall, Peter
    Li, Qi
    Racine, Jeffrey S.
    REVIEW OF ECONOMICS AND STATISTICS, 2007, 89 (04) : 784 - 789
  • [30] Regression modeling for nonparametric estimation of distribution and quantile functions
    Cheng, MY
    Peng, L
    STATISTICA SINICA, 2002, 12 (04) : 1043 - 1060