ZEROS OF ORTHOGONAL POLYNOMIALS RELATED TO BIRTH-DEATH PROCESSES

被引:0
|
作者
SANCHEZDEHESA, J [1 ]
机构
[1] KFA JULICH GMBH,INST KERNPHYS THEORIE,D-5170 JULICH 1,FED REP GER
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:T397 / T399
页数:3
相关论文
共 50 条
  • [31] Markov - Modulated Birth-Death Processes
    Andronov, A. M.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2011, 45 (03) : 123 - 132
  • [32] Estimation for General Birth-Death Processes
    Crawford, Forrest W.
    Minin, Vladimir N.
    Suchard, Marc A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (506) : 730 - 747
  • [33] Computational methods for birth-death processes
    Crawford, Forrest W.
    Ho, Lam Si Tung
    Suchard, Marc A.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (02):
  • [34] ON EXPONENTIAL ERGODICITY FOR BIRTH-DEATH PROCESSES
    VANDOORN, EA
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 16 - 16
  • [35] On the convergence to stationarity of birth-death processes
    Coolen-Schrijner, P
    Van Doorn, EA
    JOURNAL OF APPLIED PROBABILITY, 2001, 38 (03) : 696 - 706
  • [36] STOCHASTIC MONOTONICITY OF BIRTH-DEATH PROCESSES
    VANDOORN, EA
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (01) : 59 - 80
  • [37] Speed of stability for birth-death processes
    Chen, Mu-Fa
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (03) : 379 - 515
  • [38] A generalized Gompertz growth model with applications and related birth-death processes
    Asadi, Majid
    Di Crescenzo, Antonio
    Sajadi, Farkhondeh A.
    Spina, Serena
    RICERCHE DI MATEMATICA, 2023, 72 (02) : 1 - 36
  • [39] An Orthogonal-Polynomial Approach to First-Hitting Times of Birth-Death Processes
    van Doorn, Erik A.
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (02) : 594 - 607
  • [40] A generalized Gompertz growth model with applications and related birth-death processes
    Majid Asadi
    Antonio Di Crescenzo
    Farkhondeh A. Sajadi
    Serena Spina
    Ricerche di Matematica, 2023, 72 : 1 - 36