BLOCK-PARALLEL DECODING OF CONVOLUTIONAL-CODES USING NEURAL-NETWORK DECODERS

被引:5
|
作者
SAGAR, V
JACYNA, GM
SZU, H
机构
[1] CATHOLIC UNIV AMER,DEPT ELECT ENGN,HYATTSVILLE,MD 20783
[2] CATHOLIC UNIV AMER,DEPT ELECT ENGN,RESTON,VA 22091
[3] NSWC,SILVER SPRING,MD 20903
[4] UNIV MARYLAND,UNIV COLL,COLLEGE PK,MD 20742
[5] AMERICAN UNIV,DEPT COMP SCI & INFORMAT SCI,WASHINGTON,DC 20016
[6] GEORGE WASHINGTON UNIV,DEPT ECS,WASHINGTON,DC 20052
关键词
BLOCK CODES; CONVOLUTIONAL CODES; CONSTRAINT LENGTH; ENCODER MEMORY; FREE DISTANCE; HAMMING NEURAL NETWORK; MAXIMUM LIKELIHOOD DECODING; MARKOV PROCESS; STATE DIAGRAM; TRELLIS GRAPH; WINNER-TAKE-ALL CIRCUIT;
D O I
10.1016/0925-2312(94)90022-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An off-line trained and supervised neural network is proposed to decode convolutional codes one block at a time. A convolutional encoder is a linear finite-state machine and Viterbi decoder performs maximum likelihood decoding. In the neural network model a set of neurons equal to the number of encoder states forms an input stage, and a block of B stages are linked together with fully forward and backward links among adjacent stages, which span m - 1 stages on both sides, where m is the convolutional encoder memory. A Hamming neural network is used together with a winner-take-all circuit at each stage to select the decoded sequence. The performance is calibrated against noisy channel corrupted encoder inputs (constraint length K = 3, and m = 2) to be similar to the maximum likelihood Viterbi decoder.
引用
收藏
页码:455 / 471
页数:17
相关论文
共 50 条
  • [41] THE PERFORMANCE OF CONVOLUTIONAL-CODES ON THE BLOCK ERASURE CHANNEL USING VARIOUS FINITE INTERLEAVING TECHNIQUES
    LAPIDOTH, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) : 1459 - 1473
  • [42] A COMPARISON OF BLOCK AND CONVOLUTIONAL-CODES IN ARQ ERROR CONTROL SCHEMES
    DRUKAREV, A
    COSTELLO, DJ
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1982, 30 (11) : 2449 - 2455
  • [43] Iterative decoding of binary block and convolutional codes
    Hagenauer, J
    Offer, E
    Papke, L
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) : 429 - 445
  • [44] Syndrome Based Block Decoding of Convolutional Codes
    Geldmacher, Jan
    Hueske, Klaus
    Goetze, Juergen
    2008 IEEE INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS 2008), 2008, : 115 - 119
  • [45] Adaptive soft' sliding block decoding of convolutional code using the artificial neural network
    Rajbhandari, Sujan
    Ghassemlooy, Zabih
    Angelova, Maia
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2012, 23 (07): : 672 - 677
  • [46] Parallel iterative decoding for orthogonal convolutional codes
    He, YC
    Haccoun, D
    Cardinal, C
    VTC2005-SPRING: 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2005, : 615 - 619
  • [47] Convolutional neural network based decoders for surface codes (vol 22, 151, 2023)
    Bordoni, Simone
    Giagu, Stefano
    QUANTUM INFORMATION PROCESSING, 2025, 24 (01)
  • [48] Implementation of Decoders for LDPC Block Codes and LDPC Convolutional Codes Based on GPUs
    Zhao, Yue
    Lau, Francis C. M.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (03) : 663 - 672
  • [49] BEAST decoding of block codes obtained via convolutional codes
    Bocharova, IE
    Handlery, M
    Johannesson, R
    Kudryashov, BD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (05) : 1880 - 1891
  • [50] AN EFFICIENT ADAPTIVE CIRCULAR VITERBI ALGORITHM FOR DECODING GENERALIZED TAILBITING CONVOLUTIONAL-CODES
    COX, RV
    SUNDBERG, CEW
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1994, 43 (01) : 57 - 68