A GRAPHICAL PROCEDURE FOR COMPARING GOODNESS-OF-FIT TESTS

被引:0
|
作者
MUDHOLKAR, GS
KOLLIA, GD
LIN, CT
PATEL, KR
机构
[1] ABBOTT LABS, N CHICAGO, IL 60064 USA
[2] RWJ PHARMACEUT RES INST, RARITAN, NJ USA
关键词
ENTROPY TEST; ISOTONES; SENSITIVITY SURFACES; TUKEY LAMBDA FAMILY; W-TEST; ZP-TEST;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A method for comparing tests of normality using their 'isotones', i.e. contours on the surfaces representing P-values, is proposed. Select a family of distributions labelled by two parameters lambda-1 and lambda-2 to represent the null and alternative hypotheses. For each (lambda-1, lambda-2) take an 'ideal sample' from that distribution, calculate the value of the goodness-of-fit statistic and determine the corresponding P-value under the normality assumption. This generates a surface of the P-values of the 'values of the test statistic' in the (lambda-1, lambda-2) plane. In this paper the construction and interpretation of the isotones, the contours on the above surfaces, for competing tests, is illustrated using the Shapiro-Wilk W, Vasicek's entropy test and Lin and Mudholkar's Z(p)-test of the composite hypothesis of normality.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 50 条
  • [31] GOODNESS-OF-FIT TESTS FOR CORRELATED DATA
    GASSER, T
    BIOMETRIKA, 1975, 62 (03) : 563 - 570
  • [32] Maximum correlations and tests of goodness-of-fit
    Grané, A
    Fortiana, J
    DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING, 2002, : 113 - 123
  • [33] Goodness-of-fit tests for categorical data
    Bellocco, Rino
    Algeri, Sara
    STATA JOURNAL, 2013, 13 (02): : 356 - 365
  • [34] Tests for the goodness-of-fit of the Laplace distribution
    Chen, Colin
    Communications in Statistics Part B: Simulation and Computation, 2002, 31 (01): : 159 - 174
  • [35] GOODNESS-OF-FIT TESTS FOR GROUPED DATA
    MAAG, UR
    STREIT, F
    DROUILLY, PA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (342) : 462 - 465
  • [36] BASUS LEMMA AND GOODNESS-OF-FIT TESTS
    WELLS, MT
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1989, 18 (02) : 711 - 717
  • [37] Goodness-of-fit tests for the hyperbolic distribution
    Puig, P
    Stephens, MA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (02): : 309 - 320
  • [38] Tests for the goodness-of-fit of the Laplace distribution
    Chen, C
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2002, 31 (01) : 159 - 174
  • [39] On Thresholds for Robust Goodness-of-Fit Tests
    Unnikrishnan, Jayakrishnan
    Meyn, Sean
    Veeravalli, Venugopal V.
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [40] Goodness-of-fit tests for the Cauchy distribution
    Onen, BH
    Dietz, DC
    Yen, VC
    Moore, AH
    COMPUTATIONAL STATISTICS, 2001, 16 (01) : 97 - 107