FINITE-DIMENSIONALITY OF ATTRACTORS ASSOCIATED WITH VON KARMAN PLATE EQUATIONS AND BOUNDARY DAMPING

被引:17
|
作者
LASIECKA, I
机构
[1] Department of Applied Mathematics, University of Virginia, Charlottesville, VA 22903, Thornton Hall
关键词
D O I
10.1006/jdeq.1995.1057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic behavior of solutions to a fully nonlinear von Karman system is considered. The existence of compact attractors in the presence of nonlinear boundary damping is established. It is also shown that in the case of linear boundary dissipation, this attractor is of finite Hausdorff dimension (with explicit estimates of the dimension). (C) 1995 Academic Press, Inc.
引用
收藏
页码:357 / 389
页数:33
相关论文
共 50 条
  • [31] Conforming finite element methods for the von Karman equations
    Mallik, Gouranga
    Nataraj, Neela
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (05) : 1031 - 1054
  • [32] EXISTENCE OF EXPONENTIAL ATTRACTORS FOR THE PLATE EQUATIONS WITH STRONG DAMPING
    Ma, Qiaozhen
    Yang, Yun
    Zhang, Xiaoliang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [33] A NONCONFORMING FINITE ELEMENT APPROXIMATION FOR THE VON KARMAN EQUATIONS
    Mallik, Gouranga
    Nataraj, Neela
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 433 - 454
  • [34] General decay of a von Karman plate equation with memory on the boundary
    Park, Sun-Hye
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (09) : 3067 - 3080
  • [35] Plate equations with viscoelastic boundary damping
    Mustafa, Muhammad I.
    Abusharkh, Ghassan A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (02): : 307 - 323
  • [36] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [37] On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
    Janczewska, Joanna
    Zgorzelska, Anita
    Guze, Hanna
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 613 - 628
  • [38] Conservative Numerical Methods for the Full von Karman Plate Equations
    Bilbao, Stefan
    Thomas, Olivier
    Touze, Cyril
    Ducceschi, Michele
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 1948 - 1970
  • [39] ON THE CONVERGENCE OF THE CHIENS PERTURBATION METHOD FOR VON KARMAN PLATE EQUATIONS
    ZHENG, XJ
    LEE, JS
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1995, 33 (08) : 1085 - 1094
  • [40] ON A VON KARMAN PLATE SYSTEM WITH FREE BOUNDARY AND BOUNDARY CONDITIONS OF MEMORY TYPE
    Santos, M. L.
    Pereira, D. C.
    Neves, A. P. S.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (01) : 1 - 26