INVISCID LIMIT FOR VORTEX PATCHES

被引:83
|
作者
CONSTANTIN, P
WU, JH
机构
[1] Department of Mathematics, The University of Chicago, Chicago, IL, 60637
关键词
D O I
10.1088/0951-7715/8/5/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the inviscid limit for two dimensional incompressible fluids in the plane. We prove that, if the initial data are vortex patches with smooth boundaries, then the inviscid Eulerian dynamics is approached at a rate that is slower than the rate for smooth initial data. The circular patches provide lower bounds.
引用
收藏
页码:735 / 742
页数:8
相关论文
共 50 条
  • [31] A FORCED BURGERS TURBULENCE IN THE INVISCID LIMIT
    KIDA, S
    SUGIHARA, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (05) : 1785 - 1791
  • [32] Existence of the passage to the limit of an inviscid fluid
    Denis S. Goldobin
    The European Physical Journal E, 2017, 40
  • [33] On the inviscid limit of a model for crack propagation
    Knees, Dorothee
    Mielke, Alexander
    Zanini, Chiara
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (09): : 1529 - 1569
  • [34] GLOBAL REGULARITY FOR VORTEX PATCHES
    BERTOZZI, AL
    CONSTANTIN, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) : 19 - 28
  • [35] Deformation of vortex patches by boundaries
    Crosby, A.
    Johnson, E. R.
    Morrison, P. J.
    PHYSICS OF FLUIDS, 2013, 25 (02)
  • [36] THE STABILITY OF ROTATING VORTEX PATCHES
    WAN, YH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (01) : 1 - 20
  • [37] Multiscale approximation of vortex patches
    Cohen, A
    Danchin, R
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 477 - 502
  • [38] VISCOUS PROFILES OF VORTEX PATCHES
    Sueur, Franck
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2015, 14 (01) : 1 - 68
  • [39] THE INVISCID LIMIT FOR SLIP BOUNDARY CONDITIONS
    Chemetov, Nikolai
    Cipriano, Fernanda
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 431 - 438
  • [40] Inviscid limit for the damped Boussinesq equation
    Liu, Guowei
    Wang, Weike
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5521 - 5542