NUMERICAL MAPPING OF ARBITRARY DOMAINS USING SPECTRAL METHODS

被引:5
|
作者
KOOMULLIL, GP
WARSI, ZUA
机构
[1] Department of Aerospace Engineering, Mississippi State University, Mississippi State
关键词
D O I
10.1006/jcph.1993.1024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In order to maintain spectral accuracy, the grids on which a physical problem is to be solved must also be obtained by spectrally accurate techniques. The purpose of this paper is to describe a method of solving the quasilinear elliptic grid generation equations by spectral techniques both in Euclidean (E2) and Riemannian (R2) spaces. A parametric continuation method is used to generate grids in completely arbitrary domains. © 1993 Academic Press, Inc.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 50 条
  • [31] Adaptive Hermite spectral methods in unbounded domains
    Chou, Tom
    Shao, Sihong
    Xia, Mingtao
    APPLIED NUMERICAL MATHEMATICS, 2023, 183 : 201 - 220
  • [32] Novel approach to spectral methods for irregular domains
    Guimaraes, Osvaldo
    Piqueira, Jose Roberto C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (01) : 1 - 12
  • [33] Adaptive numerical methods with arbitrary fixed samplings
    Rahrooh, A
    Motlagh, BS
    JOURNAL OF VIBRATION AND CONTROL, 2000, 6 (02) : 189 - 206
  • [34] Spectral material mapping using hyperspectral imagery: a review of spectral matching and library search methods
    Vishnu, Sennaraj
    Nidamanuri, Rama Rao
    Bremananth, R.
    GEOCARTO INTERNATIONAL, 2013, 28 (02) : 171 - 190
  • [35] Numerical Solution of a Boussinesq Type Equation Using Fourier Spectral Methods
    Hassan, Hany N.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (04): : 305 - 314
  • [36] A numerical study of soliton solutions of the Boussinesq equation using spectral methods
    Tzirtzilakis, EE
    Skokos, C
    Bountis, TC
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 415 - 418
  • [37] Numerical analysis of Lamb waves using the finite and spectral cell methods
    Duczek, S.
    Joulaian, M.
    Duester, A.
    Gabbert, U.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (01) : 26 - 53
  • [38] NUMERICAL SIMULATIONS FOR NODAL DOMAINS AND SPECTRAL MINIMAL PARTITIONS
    Bonnaillie-Noel, Virginie
    Helffer, Bernard
    Vial, Gregory
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (01): : 221 - 246
  • [39] Numerical methods for differential equations in random domains
    Xiu, Dongbin
    Tartakovsky, Daniel M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 1167 - 1185
  • [40] SPECTRAL METHODS IN NUMERICAL PLASMA SIMULATION
    COUTSIAS, EA
    HANSEN, FR
    HULD, T
    KNORR, G
    LYNOV, JP
    PHYSICA SCRIPTA, 1989, 40 (03): : 270 - 279