Forecasting integer autoregressive processes of order 1: are simple AR competitive?

被引:0
|
作者
Bisaglia, Luisa [1 ]
Gerolimetto, Margherita [2 ]
机构
[1] Univ Padua, Dept Stat Sci, I-35100 Padua, Italy
[2] Ca Foscari Univ, Dept Econ, Venice, Italy
来源
ECONOMICS BULLETIN | 2015年 / 35卷 / 03期
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this work we want to clarify, via a Monte Carlo experiment, if (and when) for an integer-valued time series it is really recommended to adopt the coherent forecasting methods from INAR models or if equivalently good predictions can be obtained from the simpler AR models. Results show that INAR models should be preferred.
引用
收藏
页码:1652 / +
页数:10
相关论文
共 50 条
  • [31] On bivariate threshold Poisson integer-valued autoregressive processes
    Yang, Kai
    Zhao, Yiwei
    Li, Han
    Wang, Dehui
    METRIKA, 2023, 86 (08) : 931 - 963
  • [32] Poisson Difference Integer Valued Autoregressive Model of Order One
    Alzaid, Abdulhamid A.
    Omair, Maha A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (02) : 465 - 485
  • [33] A First-Order Spatial Integer-Valued Autoregressive SINAR(1,1) Model
    Ghodsi, Alireza
    Shitan, Mahendran
    Bakouch, Hassan S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (15) : 2773 - 2787
  • [34] On bivariate threshold Poisson integer-valued autoregressive processes
    Kai Yang
    Yiwei Zhao
    Han Li
    Dehui Wang
    Metrika, 2023, 86 : 931 - 963
  • [35] Extreme values of the uniform order 1 autoregressive processes and missing observations
    Glavas, Lenka
    Mladenovic, Pavle
    Samorodnitsky, Gennady
    EXTREMES, 2017, 20 (03) : 671 - 690
  • [36] A MINIMUM DISTANCE ESTIMATOR FOR 1ST-ORDER AUTOREGRESSIVE PROCESSES
    WANG, CWH
    ANNALS OF STATISTICS, 1986, 14 (03): : 1180 - 1193
  • [37] Extreme values of the uniform order 1 autoregressive processes and missing observations
    Lenka Glavaš
    Pavle Mladenović
    Gennady Samorodnitsky
    Extremes, 2017, 20 : 671 - 690
  • [38] ON FORECASTING WITH UNIVARIATE AUTOREGRESSIVE PROCESSES - A BAYESIAN-APPROACH
    BROEMELING, L
    LAND, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (11) : 1305 - 1320
  • [39] MODEL CHECKING OF SIMPLE CORRELATED AUTOREGRESSIVE PROCESSES
    RISAGER, F
    SCANDINAVIAN JOURNAL OF STATISTICS, 1981, 8 (03) : 137 - 153
  • [40] A SIMPLE FORM OF BARTLETT FORMULA FOR AUTOREGRESSIVE PROCESSES
    CAVAZOSCADENA, R
    STATISTICS & PROBABILITY LETTERS, 1994, 19 (03) : 221 - 231