NEARLY ONE-DIMENSIONAL HENON ATTRACTORS AND INVERSE LIMITS

被引:26
|
作者
BARGE, M [1 ]
HOLTE, S [1 ]
机构
[1] UNIV MISSOURI,DEPT MATH,ROLLA,MO 65401
关键词
D O I
10.1088/0951-7715/8/1/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that certain Henon maps restricted to their full attracting sets are topologically conjugate to shift homeomorphisms on inverse limits of intervals with bonding maps in the quadratic family.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [21] Hausdorff dimension of Cantor attractors in one-dimensional dynamics
    Li, Simin
    Shen, Weixiao
    INVENTIONES MATHEMATICAE, 2008, 171 (02) : 345 - 387
  • [22] Chaotic itinerancy based on attractors of one-dimensional maps
    Sauer, T
    CHAOS, 2003, 13 (03) : 947 - 952
  • [23] Hausdorff dimension of Cantor attractors in one-dimensional dynamics
    Simin Li
    Weixiao Shen
    Inventiones mathematicae, 2008, 171 : 345 - 387
  • [24] Examples of one-dimensional hyperbolic attractors on nonorientable surfaces
    A. Yu. Zhirov
    Mathematical Notes, 1999, 65 : 390 - 393
  • [25] Cyclicity of chaotic attractors in one-dimensional discontinuous maps
    Avrutin, Viktor
    Sushko, Irina
    Gardini, Laura
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 95 : 126 - 136
  • [26] MAGNETISM OF NEARLY ONE-DIMENSIONAL HELICAL SPIN SYSTEM
    TAKEUCHI, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 809 - 818
  • [27] One-dimensional nearly free electron states in borophene
    Kong, Longjuan
    Liu, Liren
    Chen, Lan
    Zhong, Qing
    Cheng, Peng
    Li, Hui
    Zhang, Zhuhua
    Wu, Kehui
    NANOSCALE, 2019, 11 (33) : 15605 - 15611
  • [28] Inverse limits as attractors in parameterized families
    Boyland, Philip
    de Carvalho, Andre
    Hall, Toby
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 1075 - 1085
  • [29] Approximate inverse for a one-dimensional inverse heat conduction problem
    Jonas, P
    Louis, AK
    INVERSE PROBLEMS, 2000, 16 (01) : 175 - 185
  • [30] Bifurcations of Chaotic Attractors in One-Dimensional Piecewise Smooth Maps
    Avrutin, Viktor
    Gardini, Laura
    Schanz, Michael
    Sushko, Iryna
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):