STEFAN PROBLEM IN ELLIPSOIDAL COORDINATES

被引:1
|
作者
Kharin, S. N. [1 ,2 ]
Kassabek, S. A. [2 ,3 ]
Salybek, D. [3 ]
Ashymov, T. [3 ]
机构
[1] Natl Acad Sci Kazakhstan, Inst Math, Alma Ata, Kazakhstan
[2] Kazakh British Tech Univ, Alma Ata, Kazakhstan
[3] Suleyman Demirel Univ, Alma Ata, Kazakhstan
关键词
quasi-stationary model; Stefan problem; integral method;
D O I
10.32014/2018.2518-1726.3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the quasi-stationary Stefan problem in symmetric electrical contacts.The method of the solution can be obtained from the suggestion that the identity of equipotential and isothermal surfaces in contacts, which is correct for stationary fields in linear case, keeps safe for non-linear case as well. The idea is,transform the system of problem which is given in cylindrical coordinates into ellipsoidal coordinates.The analytical solution of stationary Stefan problem is found. Based on that decision was constructed the temperature profile to the approximate solution of heat problem with Joule heating in ellipsoidal coordinates.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 50 条
  • [31] A STEFAN PROBLEM IN COMBUSTION
    LUCKHAUS, S
    THIEL, U
    ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (03) : 199 - 217
  • [32] A STEFAN SIGNORINI PROBLEM
    FRIEDMAN, A
    JIANG, LS
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (02) : 213 - 231
  • [33] GENERALIZED STEFAN PROBLEM
    JEROME, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A132 - A132
  • [34] The Stefan problem and concavity
    Albert Chau
    Ben Weinkove
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [35] Stefan problem with convection
    Yi, Fahuai
    Shih, T.M.
    Applied Mathematics and Computation (New York), 1998, 95 (2-3): : 139 - 154
  • [36] A Stochastic Stefan Problem
    Kim, Kunwoo
    Zheng, Zhi
    Sowers, Richard B.
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (04) : 1040 - 1080
  • [37] STEFAN PROBLEM FOR A SLAB
    MADEJSKI, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1975, 23 (09): : 771 - 777
  • [38] Optimal Stefan problem
    Ugur G. Abdulla
    Bruno Poggi
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [39] The Stefan diffusion problem
    Burghardt, Andrzei
    INZYNIERIA CHEMICZNA I PROCESOWA, 2007, 28 (01): : 3 - 16
  • [40] Analytical and numerical methods of converting Cartesian to ellipsoidal coordinates
    Panou, G.
    Korakitis, R.
    JOURNAL OF GEODETIC SCIENCE, 2021, 11 (01) : 111 - 121