RELATIVISTIC OSCILLATOR AND MATHIEU FUNCTIONS

被引:5
|
作者
UNTERBERGER, A [1 ]
机构
[1] UNIV REIMS,DEPT MATH,F-51062 REIMS,FRANCE
来源
关键词
D O I
10.24033/bsmf.2217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The relativistic oscillator L is a relativistic version of the harmonic oscillator : in the Klein-Gordon symbolic calculus, it is straightforward to obtain the symbols of families of operators that commute with L. A Feynman integral type representation of e(-epsilonL), With especially nice properties, is derived as a first consequence; also, in the one-dimensional case, one gets new exact properties or formulas relative to Mathieu functions.
引用
收藏
页码:479 / 508
页数:30
相关论文
共 50 条
  • [41] Bifurcation and resonance in a fractional Mathieu-Duffing oscillator
    J.H. Yang
    Miguel A.F. Sanjuán
    H.G. Liu
    The European Physical Journal B, 2015, 88
  • [42] Resonance Analysis of Fractional-Order Mathieu Oscillator
    Niu, Jiangchuan
    Gutierrez, Hector
    Ren, Bin
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (05):
  • [43] PARAMETRIC RANDOM-EXCITATION OF A DAMPED MATHIEU OSCILLATOR
    ARIARATNAM, ST
    TAM, DSF
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (11): : 449 - 452
  • [44] Mathieu functions revisited: matrix evaluation and generating functions
    Chaos-Cador, L
    Ley-Koo, E
    REVISTA MEXICANA DE FISICA, 2002, 48 (01) : 67 - 75
  • [46] On the expansion of Mathieu functions in a series of Bessel's functions
    Dhar, SC
    PHILOSOPHICAL MAGAZINE, 1934, 17 (115): : 1031 - 1038
  • [47] Bifurcation and resonance in a fractional Mathieu-Duffing oscillator
    Yang, J. H.
    Sanjuan, Miguel A. F.
    Liu, H. G.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (11): : 1 - 8
  • [48] A Mobile Mathieu Oscillator Model for Vibrational Locomotion of a Bristlebot
    Tallapragada, Phanindra
    Gandra, Chandravamsi
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2021, 13 (05):
  • [49] New analytical approximations for the Mathieu functions
    Dartora, CA
    Nobrega, KZ
    Hernandez-Figueroa, HE
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (02) : 447 - 458
  • [50] A NEW METHOD TO COMPUTE MATHIEU FUNCTIONS
    LINDNER, A
    FREESE, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (16): : 5565 - 5571