RELATIVISTIC OSCILLATOR AND MATHIEU FUNCTIONS

被引:5
|
作者
UNTERBERGER, A [1 ]
机构
[1] UNIV REIMS,DEPT MATH,F-51062 REIMS,FRANCE
来源
关键词
D O I
10.24033/bsmf.2217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The relativistic oscillator L is a relativistic version of the harmonic oscillator : in the Klein-Gordon symbolic calculus, it is straightforward to obtain the symbols of families of operators that commute with L. A Feynman integral type representation of e(-epsilonL), With especially nice properties, is derived as a first consequence; also, in the one-dimensional case, one gets new exact properties or formulas relative to Mathieu functions.
引用
收藏
页码:479 / 508
页数:30
相关论文
共 50 条