Symplectic connections on supermanifolds: Existence and non-uniqueness

被引:0
|
作者
Blaga, Paul A. [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
关键词
Symplectic supermanifolds; symplectic connections;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show, in this note, that on any symplectic supermanifold, even or odd, there exist an infinite dimensional affine space of symmetric connections, compatible to the symplectic form.
引用
收藏
页码:477 / 483
页数:7
相关论文
共 50 条
  • [31] NON-UNIQUENESS OF OPTION PRICES
    GERBER, HU
    SHIU, ESW
    INSURANCE MATHEMATICS & ECONOMICS, 1988, 7 (01): : 67 - 69
  • [32] ON THE NON-UNIQUENESS OF THE REFRACTION SOLUTION
    Gureli, Orhan
    Kayiran, Turan
    JOURNAL OF SEISMIC EXPLORATION, 2018, 27 (01): : 1 - 27
  • [33] Non-Uniqueness of Atmospheric Modeling
    Philip G. Judge
    Scott W. McIntosh
    Solar Physics, 1999, 190 : 331 - 350
  • [34] THE NON-UNIQUENESS OF LINGUISTIC INTUITIONS
    CARROLL, JM
    BEVER, TG
    POLLACK, CR
    LANGUAGE, 1981, 57 (02) : 368 - 383
  • [35] Existence and Non-uniqueness of Global Weak Solutions to Inviscid Primitive and Boussinesq Equations
    Chiodaroli, Elisabetta
    Michalek, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1201 - 1216
  • [36] Complexity, Networks, and Non-Uniqueness
    Baker, Alan
    FOUNDATIONS OF SCIENCE, 2013, 18 (04) : 687 - 705
  • [38] NON-UNIQUENESS OF PHONOLOGICAL REPRESENTATIONS
    SCHANE, SA
    LANGUAGE, 1968, 44 (04) : 709 - 716
  • [39] Non-uniqueness of atmospheric modeling
    Judge, PG
    McIntosh, SW
    SOLAR PHYSICS, 1999, 190 (1-2) : 331 - 350
  • [40] Non-uniqueness and instability of 'ankylography'
    Wang, Ge
    Yu, Hengyong
    Cong, Wenxiang
    Katsevich, Alexander
    NATURE, 2011, 480 (7375) : E2 - E3