COMPUTING INTERSECTIONS AND NORMALIZERS IN SOLUBLE GROUPS

被引:9
|
作者
GLASBY, SP [1 ]
SLATTERY, MC [1 ]
机构
[1] MARQUETTE UNIV,DEPT MATH STAT & COMP SCI,MILWAUKEE,WI 53233
关键词
D O I
10.1016/S0747-7171(08)80079-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let H and K be arbitrary subgroups of a finite soluble group G. The purpose of this paper is todescribe algorithms for constructing H∩K and NG(H). The first author has previously described algorithms for constructing H∩K when the indices |G:H| and |G:K| are coprime, and for constructing NG(H) when |G:H| and |H| are coprime (i.e. when H is a Hall subgroup of G). The intersection and normalizer algorithms described in the present paper are constructed from generalizations of these algorithms and from an orbit-stabilizer algorithm. © 1990, Academic Press Limited. All rights reserved.
引用
收藏
页码:637 / 651
页数:15
相关论文
共 50 条
  • [41] DERIVATION OF THE NORMALIZERS OF THE SPACE-GROUPS
    BOISEN, MB
    GIBBS, GV
    WONDRATSCHEK, H
    ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 : 545 - 552
  • [42] Finite groups with few normalizers or involutions
    Malinowska, Izabela Agata
    ARCHIV DER MATHEMATIK, 2019, 112 (05) : 459 - 465
  • [43] GROUPS WITH SUBNORMAL NORMALIZERS OF SUBNORMAL SUBGROUPS
    Beidleman, J. C.
    Heineken, H.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (01) : 11 - 21
  • [44] CENTRAL INTERSECTIONS AND P-LENGTH OF P-SOLUBLE GROUPS
    ANISHCHENKO, AG
    MONAKHOV, VS
    DOKLADY AKADEMII NAUK BELARUSI, 1977, 21 (11): : 968 - 971
  • [45] Normalizers of parabolic subgroups of Coxeter groups
    Allcock, Daniel
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (02): : 1137 - 1143
  • [46] FINITE GROUPS WITH ODD SYLOW NORMALIZERS
    Guralnick, Robert M.
    Navarro, Gabriel
    Pham Huu Tiep
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5129 - 5139
  • [47] ON F-NORMALIZERS OF A-GROUPS
    CHAMBERS, GA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 309 - &
  • [48] Locally finite groups with two normalizers
    Camp-Mora, S
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) : 5475 - 5480
  • [49] Finite groups with few normalizers or involutions
    Izabela Agata Malinowska
    Archiv der Mathematik, 2019, 112 : 459 - 465
  • [50] NORMALIZERS OF PARABOLIC SUBGROUPS OF REFLECTION GROUPS
    HOWLETT, RB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (FEB): : 62 - 80