ON CRAIG-LYNDON INTERPOLATION THEOREM

被引:6
|
作者
OBERSCHELP, A
机构
关键词
D O I
10.2307/2269873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:271 / +
页数:1
相关论文
共 50 条
  • [31] Craig Interpolation in the Presence of Unreliable Connectives
    Rasga J.
    Sernadas C.
    Sernadas A.
    Logica Universalis, 2014, 8 (3-4) : 423 - 446
  • [32] Craig interpolation for semilinear substructural logics
    Marchioni, Enrico
    Metcalfe, George
    MATHEMATICAL LOGIC QUARTERLY, 2012, 58 (06) : 468 - 481
  • [33] Pretabularity and Craig's Interpolation Property
    Maksimova, L. L.
    Yun, V. F.
    ALGEBRA AND LOGIC, 2023, 62 (03) : 277 - 282
  • [34] Craig Interpolation for Linear Temporal Languages
    Gheerbrant, Amelie
    ten Cate, Balder
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2009, 5771 : 287 - +
  • [35] AN INTERPOLATION THEOREM
    MILMAN, M
    SAGHER, Y
    ARKIV FOR MATEMATIK, 1984, 22 (01): : 33 - 38
  • [36] An interpolation theorem
    Otto, M
    BULLETIN OF SYMBOLIC LOGIC, 2000, 6 (04) : 447 - 462
  • [37] THEOREM OF INTERPOLATION
    ARTOLA, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (01) : 148 - 163
  • [38] THEOREM OF INTERPOLATION
    ARTOLA, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1972, (31-3): : 13 - 19
  • [39] Alternative proof of the Lyndon-Schutzenberger theorem
    Domosi, Pal
    Horvath, Geza
    THEORETICAL COMPUTER SCIENCE, 2006, 366 (03) : 194 - 198
  • [40] Uniform Lyndon interpolation property in propositional modal logics
    Taishi Kurahashi
    Archive for Mathematical Logic, 2020, 59 : 659 - 678