Memetic Multi-Objective Particle Swarm Optimization-Based Energy-Aware Virtual Network Embedding

被引:0
|
作者
Shahin, Ashraf A. [1 ,2 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
[2] Cairo Univ, Inst Stat Studies & Res, Dept Comp & Informat Sci, Cairo, Egypt
关键词
energy-efficient resource management; green computing; virtual network embedding; cloud computing; resource allocation; substrate network fragmentation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In cloud infrastructure, accommodating multiple virtual networks on a single physical network reduces power consumed by physical resources and minimizes cost of operating cloud data centers. However, mapping multiple virtual network resources to physical network components, called virtual network embedding (VNE), is known to be NP-hard. With considering energy efficiency, the problem becomes more complicated. In this paper, we model energy-aware virtual network embedding, devise metrics for evaluating performance of energy aware virtual network-embedding algorithms, and propose an energy aware virtual network-embedding algorithm based on multi-objective particle swarm optimization augmented with local search to speed up convergence of the proposed algorithm and improve solutions quality. Performance of the proposed algorithm is evaluated and compared with existing algorithms using extensive simulations, which show that the proposed algorithm improves virtual network embedding by increasing revenue and decreasing energy consumption.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 50 条
  • [41] A Multi-Objective Particle Swarm Optimization Based on Grid Distance
    Leng, Rui
    Ouyang, Aijia
    Liu, Yanmin
    Yuan, Lian
    Wu, Zongyue
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (03)
  • [42] Multi-Objective Particle Swarm Optimization Based on Grid Ranking
    Li L.
    Wang W.
    Xu X.
    Li W.
    Wang, Wanliang (zjutwwl@zjut.edu.cn), 1600, Science Press (54): : 1012 - 1023
  • [43] Integrated optimization by multi-objective particle swarm optimization
    Tokyo Metropolitan University, 1-1, Minamiosawa, Hachioji-shi, Tokyo 192-0397, Japan
    IEEJ Trans. Electr. Electron. Eng., 1931, 1 (79-81):
  • [44] Integrated Optimization by Multi-Objective Particle Swarm Optimization
    Kawarabayashi, Masaru
    Tsuchiya, Junichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 5 (01) : 79 - 81
  • [45] Surrogate-based Multi-Objective Particle Swarm Optimization
    Santana-Quintero, Luis V.
    Coello Coello, Carlos A.
    Hernandez-Diaz, Alfredo G.
    Osorio Velazquez, Jesus Moises
    2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2008, : 166 - +
  • [46] Multi-Objective Particle Swarm Optimization Based on Gaussian Sampling
    Li, Guosen
    Yan, Li
    Qu, Boyang
    IEEE ACCESS, 2020, 8 : 209717 - 209737
  • [47] Multi-Objective Particle Swarm Optimization Based on Fuzzy Optimality
    Shen, Yongpeng
    Ge, Gaorui
    IEEE ACCESS, 2019, 7 : 101513 - 101526
  • [48] Multi-objective Particle Swarm Optimization Based on Adaptive Mutation
    Saha, Debasree
    Banerjee, Suman
    Jana, Nanda Dulal
    2015 THIRD INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT), 2015,
  • [49] An Improved Multi-objective Particle Swarm Optimization
    Xu, Shengbing
    Ouyang, Zhiping
    Feng, Jiqiang
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 19 - 23
  • [50] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210