ON THE SOLUTION OF THE FINITE MOMENT PROBLEM

被引:3
|
作者
RODRIGUEZ, G
SEATZU, S
机构
[1] Dipartimento di Matematica, Università di Cagliari, 09123 Cagliari, viale Merello
关键词
D O I
10.1016/0022-247X(92)90346-F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we propose a method to obtain the normal solution of the finite moment problem both in the absence and in the presence of linear boundary constraints. The method gives the normal solution as a linear combination of Jacobi polynomials and furnishes its coefficients in terms of the moments. A number of examples are given to illustrate the strength of the method. © 1992.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 50 条
  • [41] ITERATIVE APPROXIMATION OF SOLUTION IN FINITE PROBLEM OF MOMENTS
    VASIN, VV
    DOKLADY AKADEMII NAUK SSSR, 1991, 318 (05): : 1042 - 1045
  • [42] A finite difference solution to the forward problem of electrocardiography
    Adams, RD
    Singh, N
    Adhami, R
    MSV'04 & AMCS'04, PROCEEDINGS, 2004, : 157 - 161
  • [43] On a Solution of the Multidimensional Truncated Matrix-Valued Moment Problem
    Kimsey, David P.
    Trachana, Matina
    MILAN JOURNAL OF MATHEMATICS, 2022, 90 (01) : 17 - 101
  • [45] Polynomial bases on the numerical solution of the multivariate discrete moment problem
    Madi-Nagy, Gergely
    ANNALS OF OPERATIONS RESEARCH, 2012, 200 (01) : 75 - 92
  • [46] SNO and the neutrino magnetic moment solution of the solar neutrino problem
    Akhmedov, EK
    Pulido, J
    PHYSICS LETTERS B, 2000, 485 (1-3) : 178 - 186
  • [47] ANALYTIC SOLUTION OF THE STEFAN PROBLEM IN FINITE MEDIA
    KAR, A
    MAZUMDER, J
    QUARTERLY OF APPLIED MATHEMATICS, 1994, 52 (01) : 49 - 58
  • [48] ON SOLUTION OF BENARD PROBLEM WITH BOUNDARIES OF FINITE CONDUCTIVITY
    HURLE, DTJ
    JAKEMAN, E
    PIKE, ER
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 296 (1447): : 469 - &
  • [49] Generalized finite difference solution for the Motz Problem
    Chavez, Carlos
    Dominguez Mota, Francisco Javier
    Lucas-Martinez, Salvador
    Gerardo Tinoco-Ruiz, Jose
    Santana Quinteros, Daniel
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2021, 37 (01):
  • [50] A numerical solution method for the fractional moment problem within engineering
    Wang, Yifan
    Tani, Ryuichi
    Uchida, Kenetsu
    ENGINEERING COMPUTATIONS, 2025, 42 (02) : 637 - 666