Spatiotemporal social (STS) data model: correlating social networks and spatiotemporal data

被引:6
|
作者
Khetarpaul, Sonia [1 ]
Gupta, S. K. [1 ]
Subramaniam, L. Venkata [2 ]
机构
[1] IIT Delhi, Dept Comp Sci & Engn, New Delhi, India
[2] IBM Res India, New Delhi, India
关键词
Spatiotemporal data; Social network; Checkins;
D O I
10.1007/s13278-016-0388-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A location-based social network is a network representation of social relations among actors, which not only allow them to connect to other users/ friends but also they can share and access their physical locations. Here, the physical location consists of the instant location of an individual at a given timestamp and the location history that an individual has accumulated in a certain period. This paper aimed to capture this spatiotemporal social network (STS) data of location-based social networks and model it. In this paper, we propose a STS data model which captures both non-spatial and spatial properties of moving users, connected on social network. In our model, we define data types and operations that make querying spatiotemporal social network data easy and efficient. We extend spatiotemporal data model for moving objects proposed in Ferreira et al. (Trans GIS 18(2):253-269, 2014) for social networks. The data model infers individual's location history and helps in querying social network users for their spatiotemporal locations, social links, influences, their common interests, behavior, activities, etc. We show the some results of applying our data model on a spatiotemporal dataset (GeoLife) and two large real-life spatiotemporal social network datasets (Gowalla, Brightkite) collected over a period of two years. We apply the proposed model to determine interesting locations in the city and correlate the impact of social network relationships on the spatiotemporal behavior of the users.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Spatiotemporal data model for real-time GIS
    Gong, Jianya
    Li, Xiaolong
    Wu, Huayi
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2014, 43 (03): : 226 - 232
  • [42] An extension to the ADT-based spatiotemporal data model
    Jin, PQ
    Yue, LH
    Gong, YC
    IKE '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE ENGNINEERING, 2004, : 216 - 221
  • [43] A Bayesian spatiotemporal model for very large data sets
    Harrison, L. M.
    Green, G. G. R.
    NEUROIMAGE, 2010, 50 (03) : 1126 - 1141
  • [44] Fuzzy c-means based coincidental link filtering in support of inferring social networks from spatiotemporal data streams
    Zhang, Pu
    Shen, Qiang
    SOFT COMPUTING, 2018, 22 (21) : 7015 - 7025
  • [45] Fuzzy c-means based coincidental link filtering in support of inferring social networks from spatiotemporal data streams
    Pu Zhang
    Qiang Shen
    Soft Computing, 2018, 22 : 7015 - 7025
  • [46] Spatiotemporal Data Fusion in Graph Convolutional Networks for Traffic Prediction
    Zhao, Baoxin
    Gao, Xitong
    Liu, Jianqi
    Zhao, Juanjuan
    Xu, Chengzhong
    IEEE ACCESS, 2020, 8 : 76632 - 76641
  • [47] Social Media Big Data-Based Research on the Influencing Factors of Insomnia and Spatiotemporal Evolution
    Liu, Yu
    Luo, Qinyao
    Shen, Hang
    Zhuang, Sida
    Xu, Chen
    Dong, Yihe
    Sun, Yukai
    Wang, Shaochen
    Deng, Hao
    IEEE ACCESS, 2020, 8 : 41516 - 41529
  • [48] Linking Open Spatiotemporal Data in the Data Clouds
    Hu, He
    Du, Xiaoyong
    ROUGH SET AND KNOWLEDGE TECHNOLOGY (RSKT), 2010, 6401 : 304 - 309
  • [49] Spatiotemporal variations of public opinion on social distancing in the Netherlands: Comparison of Twitter and longitudinal survey data
    Zhang, Chao
    Wang, Shihan
    Sang, Erik Tjong Kim
    Adriaanse, Marieke A.
    Tummers, Lars
    Schraagen, Marijn
    Qi, Ji
    Dastani, Mehdi
    Aarts, Henk
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [50] Spatiotemporal Aspects of Big Data
    Karim, Saadia
    Soomro, Tariq Rahim
    Burney, S. M. Aqil
    APPLIED COMPUTER SYSTEMS, 2018, 23 (02) : 90 - 100