Bounds on integrals with respect to multivariate copulas

被引:2
|
作者
Preischl, Michael [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
来源
DEPENDENCE MODELING | 2016年 / 4卷 / 01期
基金
奥地利科学基金会;
关键词
Copulas; linear assignment problems; dependence measure; credit risk;
D O I
10.1515/demo-2016-0016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we present a method to obtain upper and lower bounds on integrals with respect to copulas by solving the corresponding assignment problems (AP's). In their 2014 paper, Hofer and Iaco proposed this approach for two dimensions and stated the generalization to arbitrary dimensons as an open problem. We will clarify the connection between copulas and AP's and thus find an extension to the multidimensional case. Furthermore, we provide convergence statements and, as applications, we consider three dimensional dependence measures as well as an example from finance.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 50 条
  • [31] Multivariate counting processes:: Copulas and beyond
    Baeuerle, Nicole
    Gruebel, Rudolf
    ASTIN BULLETIN, 2005, 35 (02): : 379 - 408
  • [32] Multivariate dependence concepts through copulas
    Wei, Zheng
    Wang, Tonghui
    Nguyen, Phuong Anh
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 65 : 24 - 33
  • [33] Characterizations of Multivariate Implicit Dependence Copulas
    Santiwipanont, Tippawan
    Sumetkijakan, Songkiat
    Yanpaisan, Noppawit
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 440 - 448
  • [34] Multivariate measures of concordance for copulas and their marginals
    Taylor, M. D.
    DEPENDENCE MODELING, 2016, 4 (01): : 224 - 236
  • [35] Bounds for Jaeger integrals
    Árpád Baricz
    Tibor K. Pogány
    Saminathan Ponnusamy
    Imre Rudas
    Journal of Mathematical Chemistry, 2015, 53 : 1257 - 1273
  • [36] Bounds for Jaeger integrals
    Baricz, Arpad
    Pogany, Tibor K.
    Ponnusamy, Saminathan
    Rudas, Imre
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (05) : 1257 - 1273
  • [37] On multivariate countermonotonic copulas and their actuarial application
    Ko B.
    Ahn J.Y.
    Lobachevskii Journal of Mathematics, 2016, 37 (4) : 387 - 396
  • [38] Essential closures and supports of multivariate copulas
    Ruankong, P.
    Sumetkijakan, S.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (06) : 762 - 768
  • [39] On the α-migrativity of multivariate semi-copulas
    Durante, Fabrizio
    Fernandez-Sanchez, Juan
    Juan Quesada-Molina, Jose
    INFORMATION SCIENCES, 2012, 187 : 216 - 223
  • [40] Idempotent and multivariate copulas with fractal support
    Trutschnig, Wolfgang
    Fernandez Sanchez, Juan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3086 - 3096