Fibonacci and Lucas Differential Equations

被引:0
|
作者
Erkus-Duman, Esra [1 ]
Ciftci, Hakan [2 ]
机构
[1] Gazi Univ, Dept Math, TR-06500 Ankara, Turkey
[2] Gazi Univ, Dept Phys, TR-06500 Ankara, Turkey
关键词
Fibonacci Polynomial; Lucas Polynomial; Recurrence Relation; Gaussian Function; Hypergeometric Differential Equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The second-order linear hypergeometric differential equation and the hypergeometric function play a central role in many areas of mathematics and physics. The purpose of this paper is to obtain differential equations and the hypergeometric forms of the Fibonacci and the Lucas polynomials. We also write again these polynomials by means of Olver's hypergeometric functions. In addition, we present some relations between these polynomials and the other well-known functions.
引用
收藏
页码:756 / 763
页数:8
相关论文
共 50 条
  • [41] Perfect fibonacci and lucas numbers
    Luca F.
    Rendiconti del Circolo Matematico di Palermo, 2000, 49 (2) : 313 - 318
  • [42] Partial Fibonacci and Lucas numbers
    Strazdins, I
    FIBONACCI QUARTERLY, 1999, 37 (03): : 240 - 247
  • [43] On Fibonacci and Lucas Generalized Octonions
    Bilgici, Goksal
    Unal, Zafer
    Tokeser, Umit
    Mert, Tugba
    ARS COMBINATORIA, 2018, 138 : 35 - 44
  • [44] A Fibonacci-Lucas equality
    Kwong, H
    FIBONACCI QUARTERLY, 2001, 39 (02): : 186 - 186
  • [45] A generalization of Fibonacci and Lucas matrices
    Stanimirovic, Predrag
    Nikolov, Jovana
    Stanimirovic, Ivan
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (14) : 2606 - 2619
  • [46] A Fibonacci-Lucas extremum
    Knuth, DE
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (08): : 762 - 763
  • [47] GENERALIZATIONS OF THE FIBONACCI AND LUCAS POLYNOMIALS
    Djordjevic, Gospava B.
    FILOMAT, 2009, 23 (03) : 291 - 301
  • [48] Fibonacci and Lucas Congruences and Their Applications
    Keskin, Refik
    Bitim, Bahar Demirturk
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (04) : 725 - 736
  • [49] Introduction to Fibonacci and Lucas hybrinomials
    Szynal-Liana, Anetta
    Wloch, Iwona
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (10) : 1736 - 1747
  • [50] The observability of the Fibonacci and the Lucas cubes
    Dedó, E
    Torri, D
    Salvi, NZ
    DISCRETE MATHEMATICS, 2002, 255 (1-3) : 55 - 63