SUBSHIFTS OF FINITE TYPE AND SOFIC SYSTEMS

被引:215
|
作者
WEISS, B [1 ]
机构
[1] HEBREW UNIV,JERUSALEM,ISRAEL
来源
MONATSHEFTE FUR MATHEMATIK | 1973年 / 77卷 / 05期
关键词
D O I
10.1007/BF01295322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:462 / 474
页数:13
相关论文
共 50 条
  • [41] Factors of Gibbs measures for subshifts of finite type
    Kempton, Thomas M. W.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 751 - 764
  • [42] Exponential law for random subshifts of finite type
    Rousseau, Jerome
    Saussol, Benoit
    Varandas, Paulo
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (10) : 3260 - 3276
  • [43] Topological Entropy of a Class of Subshifts of Finite Type
    Jin Zhong XU
    Lan Yu WANG
    Acta Mathematica Sinica,English Series, 2018, (12) : 1765 - 1777
  • [44] SUBSHIFTS OF FINITE TYPE IN LINKED TWIST MAPPINGS
    DEVANEY, RL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (02) : 334 - 338
  • [45] A SOFIC SYSTEM WHICH IS NOT SPECTRALLY OF FINITE-TYPE
    WILLIAMS, S
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 : 483 - 490
  • [46] Sofic and Almost of Finite Type Tree-Shifts
    Aubrun, Nathalie
    Beal, Marie-Pierre
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2010, 6072 : 12 - 24
  • [47] Uniform Sampling of Subshifts of Finite Type on Grids and Trees
    Mairesse, Jean
    Marcovici, Irene
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2017, 28 (03) : 263 - 287
  • [48] Slopes of 3-Dimensional Subshifts of Finite Type
    Moutot, Etienne
    Vanier, Pascal
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, CSR 2018, 2018, 10846 : 257 - 268
  • [49] Quenched Poisson processes for random subshifts of finite type
    Crimmins, Harry
    Saussol, Benoit
    NONLINEARITY, 2022, 35 (06) : 3036 - 3058
  • [50] Subshifts of finite type and self-similar sets
    Jiang, Kan
    Dajani, Karma
    NONLINEARITY, 2017, 30 (02) : 659 - 686