THE PERFORMANCE OF AN EIGENVALUE BOUND ON THE MAX-CUT PROBLEM IN SOME CLASSES OF GRAPHS

被引:18
|
作者
DELORME, C [1 ]
POLJAK, S [1 ]
机构
[1] CHARLES UNIV, KAM MFF, CS-1180 PRAGUE, CZECHOSLOVAKIA
关键词
D O I
10.1016/0012-365X(93)90151-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors earlier introduced a number phi(G), which gives a well-computable upper bound on the maximum bipartite subgraph of a graph or, more generally, on the maximum cut of a weighted graph. In this paper we study the performance of this bound on a large variety of examples from the graph theory. We also present an alternative definition of phi(G) using a graph operation of vertex-splitting. Finally, we present the results of some preliminary computational experiments on randomly generated graphs.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [41] NP-hardness of the Euclidean Max-Cut problem
    Ageev, A. A.
    Kel'manov, A. V.
    Pyatkin, A. V.
    DOKLADY MATHEMATICS, 2014, 89 (03) : 343 - 345
  • [42] Branch and Cut based on the volume algorithm:: Steiner trees in graphs and Max-cut
    Barahona, Francisco
    Ladanyi, Laszlo
    RAIRO-OPERATIONS RESEARCH, 2006, 40 (01) : 53 - 73
  • [43] Partitioning planar graphs: a fast combinatorial approach for max-cut
    F. Liers
    G. Pardella
    Computational Optimization and Applications, 2012, 51 : 323 - 344
  • [44] Partitioning planar graphs: a fast combinatorial approach for max-cut
    Liers, F.
    Pardella, G.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (01) : 323 - 344
  • [45] Finding local Max-Cut in graphs in randomized polynomial time
    Lunshan Gao
    Soft Computing, 2024, 28 : 3029 - 3048
  • [46] Max-Cut Problem Implementation and Analysis on a Quantum Computer
    Verghese, Ayaan
    Byron, David
    Amann, Andreas
    Popovici, Emanuel
    2022 33RD IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2022,
  • [47] Max-Cut Parameterized above the Edwards-Erdos Bound
    Crowston, Robert
    Jones, Mark
    Mnich, Matthias
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 242 - 253
  • [48] Solving the Max-Cut Problem using Semidefinite Optimization
    Orkia, Derkaoui
    Ahmed, Lehireche
    2016 4TH IEEE INTERNATIONAL COLLOQUIUM ON INFORMATION SCIENCE AND TECHNOLOGY (CIST), 2016, : 768 - 772
  • [49] A NOTE ON LINE DIGRAPHS AND THE DIRECTED MAX-CUT PROBLEM
    CHVATAL, V
    EBENEGGER, C
    DISCRETE APPLIED MATHEMATICS, 1990, 29 (2-3) : 165 - 170
  • [50] NP-hardness of the Euclidean Max-Cut problem
    A. A. Ageev
    A. V. Kel’manov
    A. V. Pyatkin
    Doklady Mathematics, 2014, 89 : 343 - 345