CONSTRUCTIVE METHOD FOR LATTICE GAUGE THEORY

被引:0
|
作者
BAAQUIE, BE
机构
来源
PHYSICAL REVIEW D | 1978年 / 18卷 / 06期
关键词
D O I
10.1103/PhysRevD.18.2056
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:2056 / 2061
页数:6
相关论文
共 50 条
  • [21] Electroweak defects in lattice gauge theory
    Ilgenfritz, EM
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (138): : 28 - 29
  • [22] Chiral extension of lattice gauge theory
    Brower, RC
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 901 - 903
  • [23] The early days of lattice gauge theory
    Creutz, M
    MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 52 - 60
  • [24] LATTICE GAUGE CALCULATION IN PARTICLE THEORY
    BARKAI, D
    MORIARTY, KJM
    REBBI, C
    COMPUTER PHYSICS COMMUNICATIONS, 1985, 36 (03) : 241 - 247
  • [25] GAUGE-THEORY ON A RANDOM LATTICE
    CHRIST, NH
    FRIEDBERG, R
    LEE, TD
    NUCLEAR PHYSICS B, 1982, 210 (03) : 310 - 336
  • [26] PROGRESS IN LATTICE GAUGE-THEORY
    KOGUT, JB
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 67 (01): : 67 - 102
  • [27] Topological Summation in Lattice Gauge Theory
    Bietenholz, Wolfgang
    Hip, Ivan
    XIII MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2012, 378
  • [28] Quantum deformation of lattice gauge theory
    Boulatov, DV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (02) : 295 - 322
  • [29] Photon operators for lattice gauge theory
    Lewis, Randy
    Woloshyn, R. M.
    PHYSICAL REVIEW D, 2018, 98 (03)
  • [30] The confinement problem in lattice gauge theory
    Greensite, J
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 51, NO 1, 2003, 51 (01): : 1 - 83