INTRINSIC DIMENSIONALITY DETECTION CRITERION BASED ON LOCALLY LINEAR EMBEDDING

被引:1
|
作者
Meng, Liang [1 ]
Breitkopf, Piotr [2 ]
机构
[1] Northwestern Polytech Univ, State IJR Ctr Aerosp Design & Addit Mfg, 127 West Youyi Rd, Xian 710072, Shaanxi, Peoples R China
[2] Univ Technol Compiegne, Sorbonne Univ, UMR UTC CNRS 7337, F-60200 Compiegne, France
来源
COMPUTER SCIENCE-AGH | 2018年 / 19卷 / 03期
基金
中国国家自然科学基金;
关键词
LLE; dimensionality reduction; intrinsic dimensionality; neighborhood preserving;
D O I
10.7494/csci.2018.19.3.2866
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we revisit the Locally Linear Embedding (LLE) algorithm that is widely employed in dimensionality reduction. With a particular interest to the correspondences of the nearest neighbors in the original and embedded spaces, we observe that, when prescribing low-dimensional embedding spaces, LLE remains merely a weight-preserving rather than a neighborhood-preserving algorithm. Thus, we propose a "neighborhood-preserving ratio" criterion to estimate the minimal intrinsic dimensionality required for neighborhood preservation. We validate its efficiency on sets of synthetic data, including S-curve, Swiss roll, and a dataset of grayscale images.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 50 条
  • [31] Multiview Locally Linear Embedding for Spectral-Spatial Dimensionality Reduction of Hyperspectral Imagery
    Ji, Haochen
    Zuo, Zongyu
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (06) : 1091 - 1094
  • [32] k/K-Nearest Neighborhood Criterion for Improvement of Locally Linear Embedding
    Eftekhari, Armin
    Abrishami-Moghaddam, Hamid
    Babaie-Zadeh, Massoud
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2009, 5702 : 808 - +
  • [33] k/K-Nearest Neighborhood Criterion for Improving Locally Linear Embedding
    Eftekhari, Armin
    Moghaddam, Hamid Abrishami
    Babaie-Zadeh, Massoud
    PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, IMAGING AND VISUALIZATION, 2009, : 392 - +
  • [34] Fault Detection Based on Modified Kernel Semi-Supervised Locally Linear Embedding
    Zhang, Yingwei
    Fu, Yuanjian
    Wang, Zhenbang
    Feng, Lin
    IEEE ACCESS, 2018, 6 : 479 - 487
  • [35] Fault Detection Based on Incremental Locally Linear Embedding for Satellite TX-I
    程月华
    胡国飞
    陆宁云
    姜斌
    邢琰
    Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32 (06) : 600 - 609
  • [36] Maximal Linear Embedding for Dimensionality Reduction
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    Chen, Jie
    Gao, Wen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (09) : 1776 - 1792
  • [37] Locally Linear Embedding by Linear Programming
    Xu, Zhijie
    Zhang, Jianqin
    Xu, Zhidan
    Chen, Zhigang
    CEIS 2011, 2011, 15
  • [38] Shrinkage-divergence-proximity locally linear embedding algorithm for dimensionality reduction of hyperspectral image
    罗琴
    田铮
    赵志祥
    Chinese Optics Letters, 2008, (08) : 558 - 560
  • [39] Multi-manifold learning using locally linear embedding (LLE) nonlinear dimensionality reduction
    Ma, Rui
    Wang, Jiaxin
    Song, Yixu
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2008, 48 (04): : 582 - 585
  • [40] Locally Minimizing Embedding and Globally Maximizing Variance: Unsupervised Linear Difference Projection for Dimensionality Reduction
    Wan, Minghua
    Lai, Zhihui
    Jin, Zhong
    NEURAL PROCESSING LETTERS, 2011, 33 (03) : 267 - 282