CRITICAL PROPERTIES OF TWO-DIMENSIONAL MODELS

被引:220
|
作者
BLACK, JL [1 ]
EMERY, VJ [1 ]
机构
[1] BROOKHAVEN NATL LAB, UPTON, NY 11973 USA
关键词
D O I
10.1103/PhysRevB.23.429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:429 / 432
页数:4
相关论文
共 50 条
  • [21] Geometric properties of two-dimensional critical and tricritical Potts models -: art. no. 026123
    Deng, YJ
    Blöte, HWJ
    Nienhuis, B
    PHYSICAL REVIEW E, 2004, 69 (02): : 026123 - 1
  • [22] Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions
    Alves, G. A.
    Vasconcelos, M. S.
    Alves, T. F. A.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [23] Critical eigenstates and their properties in one- and two-dimensional quasicrystals
    Mace, Nicolas
    Jagannathan, Anuradha
    Kalugin, Pavel
    Mosseri, Remy
    Piechon, Frederic
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [24] Transfer matrix computation of critical polynomials for two-dimensional Potts models
    Jacobsen, Jesper Lykke
    Scullard, Christian R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (07)
  • [25] Critical behavior of two-dimensional frustrated spin models with noncollinear order
    Calabrese, P
    Parruccini, P
    PHYSICAL REVIEW B, 2001, 64 (18)
  • [26] Critical relaxation in two-dimensional random-bond Potts models
    Chen, S
    Landau, DP
    PHYSICAL REVIEW E, 1997, 55 (01): : 40 - 44
  • [27] Critical scaling of the mutual information in two-dimensional disordered Ising models
    Sriluckshmy, P. V.
    Mandal, Ipsita
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [28] TWO-DIMENSIONAL LORENTZIAN MODELS
    Malyshev, V.
    Yambartsev, A.
    Zamyatin, A.
    MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (03) : 439 - 456
  • [29] A STUDY OF TWO-DIMENSIONAL MODELS
    BANERJEE, R
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1984, 25 (03): : 251 - 258
  • [30] Two-dimensional growth models
    Williams, HT
    Goodwin, L
    Desjardins, SG
    Billings, FT
    PHYSICS LETTERS A, 1998, 250 (1-3) : 105 - 110