Some generalizations of Paley's theorems on Fourier series with positive coefficients

被引:0
|
作者
Fekete, Michael [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Jerusalem, Palestine, Israel
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:237 / 249
页数:13
相关论文
共 50 条
  • [31] Some generalizations of theorems on vertex coloring
    Berlov, S. L.
    Dol'nikov, V. L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1582 - 1585
  • [32] Generalizations of some zero sum theorems
    M N CHINTAMANI
    B K MORIYA
    Proceedings - Mathematical Sciences, 2012, 122 : 15 - 21
  • [33] Generalizations of some zero sum theorems
    Chintamani, M. N.
    Moriya, B. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01): : 15 - 21
  • [34] Paley-Wiener and Boas Theorems for the Quaternion Fourier Transform
    Fu, Yingxiong
    Li, Luoqing
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (04) : 837 - 848
  • [35] Real Paley-Wiener theorems for the Clifford Fourier transform
    YingXiong Fu
    LuoQing Li
    Science China Mathematics, 2014, 57 : 2381 - 2392
  • [36] Elementary theorems concerning power series with positive coefficients and moment constants of positive functions
    Hardy, GH
    Littlewood, JE
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1926, 157 (1/4): : 141 - 158
  • [37] Real Paley-Wiener theorems for the Clifford Fourier transform
    Fu YingXiong
    Li LuoQing
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2381 - 2392
  • [38] Real Paley-Wiener theorems for the Clifford Fourier transform
    FU YingXiong
    LI LuoQing
    ScienceChina(Mathematics), 2014, 57 (11) : 2381 - 2392
  • [39] Paley-Wiener and Boas Theorems for the Quaternion Fourier Transform
    Yingxiong Fu
    Luoqing Li
    Advances in Applied Clifford Algebras, 2013, 23 : 837 - 848
  • [40] SOME GENERALIZATIONS OF GREGORY'S POWER SERIES AND THEIR APPLICATIONS
    Gawronska, Natalia
    Slota, Damian
    Witula, Roman
    Zielonka, Adam
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2013, 12 (03) : 79 - 91