Segmentation of Total Cell Area in Brightfield Microscopy Images

被引:8
|
作者
Cepa, Martin [1 ]
机构
[1] Contipro As, Dolni Dobrouc 401, Dolni Dobrou 56102, Czech Republic
关键词
brightfield segmentation; microscopy; ImageJ; Fiji; image analysis; cells;
D O I
10.3390/mps1040043
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Segmentation is one of the most important steps in microscopy image analysis. Unfortunately, most of the methods use fluorescence images for this task, which is not suitable for analysis that requires a knowledge of area occupied by cells and an experimental design that does not allow necessary labeling. In this protocol, we present a simple method, based on edge detection and morphological operations, that separates total area occupied by cells from the background using only brightfield channel image. The resulting segmented picture can be further used as a mask for fluorescence quantification and other analyses. The whole procedure is carried out in open source software Fiji.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Auto-segmentation of cancer spheroid 2D brightfield images
    Bromma, Kyle
    Chithrani, Devika
    Beckham, Wayne
    MEDICAL PHYSICS, 2021, 48 (08) : 4669 - 4669
  • [22] Accurate cell segmentation in microscopy images using membrane patterns
    Dimopoulos, Sotiris
    Mayer, Christian E.
    Rudolf, Fabian
    Stelling, Joerg
    BIOINFORMATICS, 2014, 30 (18) : 2644 - 2651
  • [23] Evaluation of segmentation techniques for cell tracking in confocal microscopy images
    Forero, Manuel G.
    Rodriguez, Luis H.
    Miranda, Sergio L.
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIV, 2021, 11842
  • [24] An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images
    Lin, Sherry
    Norouzi, Narges
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3201 - 3204
  • [25] Background segmentation in microscopy images
    Charles, J. J.
    Kuncheva, L. I.
    Wells, B.
    Lim, I. S.
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 139 - 145
  • [26] Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks
    Ferreira, E. K. G. D.
    Silveira, G. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] MobilityAnalyser: A novel approach for automatic quantification of cell mobility on periodic patterned substrates using brightfield microscopy images
    Carvalho, Angela
    Esteves, Tiago
    Quelhas, Pedro
    Monteiro, Fernando Jorge
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 : 61 - 67
  • [28] Nucleus-Guided Cell Segmentation Method for Brightfield Micrographs
    Wang, Yidong
    Du, Yongzhao
    Li, Ling
    Fu, Yuqing
    Diao, Yong
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [29] HISTOBREAST, a collection of brightfield microscopy images of Haematoxylin and Eosin stained breast tissue
    Buga, Roxana M.
    Totu, Tiberiu
    Dumitru, Adrian
    Costache, Mariana
    Floroiu, Iustin
    Sladoje, Natasa
    Stanciu, Stefan G.
    SCIENTIFIC DATA, 2020, 7 (01)
  • [30] HISTOBREAST, a collection of brightfield microscopy images of Haematoxylin and Eosin stained breast tissue
    Roxana M. Buga
    Tiberiu Totu
    Adrian Dumitru
    Mariana Costache
    Iustin Floroiu
    Nataša Sladoje
    Stefan G. Stanciu
    Scientific Data, 7