Sobolev Embedding Theorem for the Sobolev-Morrey spaces

被引:0
|
作者
Burenkov, V. I. [1 ]
Kydyrmina, N. A. [2 ]
机构
[1] Cardiff Univ, Cardiff, S Glam, Wales
[2] Inst Appl Math, Karaganda, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2016年 / 83卷 / 03期
关键词
Morrey space; Sobolev-Morrey space; Sobolev Embedding Theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [21] AN IMPROVED COMPACT EMBEDDING THEOREM FOR DEGENERATE SOBOLEV SPACES
    Monticelli, Dario D.
    Rodney, Scott
    MATEMATICHE, 2020, 75 (01): : 259 - 275
  • [22] EMBEDDING THEOREM OF THE WEIGHTED SOBOLEV-LORENTZ SPACES
    Li, Hongliang
    Ruan, Jianmiao
    Sun, Qinxiu
    GLASGOW MATHEMATICAL JOURNAL, 2022, 64 (02) : 358 - 375
  • [23] Sobolev-Morrey regularity of solutions to general quasilinear elliptic equations
    Byun, Sun-Sig
    Palagachev, Dian K.
    Shin, Pilsoo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 176 - 190
  • [24] ON AN EMBEDDING OF SOBOLEV SPACES
    KOLYADA, VI
    MATHEMATICAL NOTES, 1993, 54 (3-4) : 908 - 922
  • [25] Generalized Sobolev-Morrey estimates for hypoelliptic operators on homogeneous groups
    Guliyev, V. S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [26] Uhlenbeck's Decomposition in Sobolev and Morrey-Sobolev Spaces
    Goldstein, Pawel
    Zatorska-Goldstein, Anna
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [27] Local Sobolev-Morrey estimates for nondivergence operators with drift on homogeneous groups
    Feng, Xiaojing
    Niu, Pengcheng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 683 - 709
  • [28] THE COMPOSITION OPERATOR IN SOBOLEV MORREY SPACES
    Kydyrmina, N.
    de Cristoforis, M. Lanza
    EURASIAN MATHEMATICAL JOURNAL, 2016, 7 (02): : 50 - 67
  • [29] An embedding theorem of Sobolev type
    Watanabe, S
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (04) : 369 - 374
  • [30] Sobolev embeddings in grand Morrey spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2367 - 2381