Prediction of Atmospheric Corrosion of Ancient Door Knockers via Neural Networks

被引:2
|
作者
Houshmandynia, Shahrzad [1 ]
Raked, Roya [2 ]
Golbabaei, Fardad [3 ]
机构
[1] Islamic Azad Univ, Arak Branch, Dept MBA Mkt, POB 1997683953, Arak, Iran
[2] Dept Masters Handicrafts Art & Architecture Ardak, Yazd, Iran
[3] AREEO, Res Inst Forests & Rangelands, Dept Wood & Paper Sci, Tehran, Iran
来源
CHEMICAL METHODOLOGIES | 2018年 / 2卷 / 04期
关键词
Anticipation; Neural network; Atmospheric corrosion; Bronze corrosion;
D O I
10.22034/CHEMM.2018.65388
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The importance of door knockers persuades us to anticipate the atmospheric corrosion through Neural Network (NN) which is validated by data originated from literature. NNs are used in order to anticipate the effective parameter on bronze atmospheric corrosion including the ambient temperature, exposition time, relative humidity, PH, SO2 concentration as an air pollutant and also metal's precipitations. As these factors are extremely complicated, exact mathematical language of the diverse metals corrosion are not comprehended. The results of this study showed that SO2 concentration as an air pollutant and time of exposition are the fundamental effects on corrosion weight loss of bronze.
引用
收藏
页码:324 / 332
页数:9
相关论文
共 50 条
  • [31] Neural networks for Nyquist plots prediction during corrosion inhibition of a pipeline steel
    Colorado-Garrido, D.
    Ortega-Toledo, D. M.
    Hernandez, J. A.
    Gonzalez-Rodriguez, J. G.
    Uruchurtu, J.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (11) : 1715 - 1722
  • [32] Neural networks for Nyquist plots prediction during corrosion inhibition of a pipeline steel
    D. Colorado-Garrido
    D. M. Ortega-Toledo
    J. A. Hernández
    J. G. González-Rodríguez
    J. Uruchurtu
    Journal of Solid State Electrochemistry, 2009, 13 : 1715 - 1722
  • [33] Precision Mars Entry Navigation with Atmospheric Density Adaptation via Neural Networks
    Giraldo-Grueso, Felipe
    Popov, Andrey A.
    Zanetti, Renato
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2024, 21 (12): : 982 - 995
  • [34] Image data processing via neural networks for tool wear prediction
    D'Addona, D. M.
    Teti, R.
    EIGHTH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2013, 12 : 252 - 257
  • [35] Urban events prediction via convolutional neural networks and Instagram data
    Mukhina, Ksenia D.
    Visheratin, Alexander A.
    Nasonov, Denis
    8TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE ON COMPUTATIONAL SCIENCE, YSC2019, 2019, 156 : 176 - 184
  • [36] Prediction of pitch and yaw head movements via recurrent neural networks
    Aguilar, M
    Barniv, Y
    Garrett, A
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2813 - 2818
  • [37] HLA class I binding prediction via convolutional neural networks
    Vang, Yeeleng S.
    Xie, Xiaohui
    BIOINFORMATICS, 2017, 33 (17) : 2658 - 2665
  • [38] Rating prediction via generative convolutional neural networks based regression
    Ning, Xiaodong
    Yac, Lina
    Wang, Xianzhi
    Benatallah, Boualem
    Dong, Manqing
    Zhang, Shuai
    PATTERN RECOGNITION LETTERS, 2020, 132 : 12 - 20
  • [39] Detecting adversarial examples via prediction difference for deep neural networks
    Guo, Feng
    Zhao, Qingjie
    Li, Xuan
    Kuang, Xiaohui
    Zhang, Jianwei
    Han, Yahong
    Tan, Yu-an
    INFORMATION SCIENCES, 2019, 501 : 182 - 192
  • [40] Conducted Electromagnetic Interference Prediction of the Buck Converter via Neural Networks
    Han, Sumin
    Wang, Fuzhong
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P404 - P407