Prediction of Atmospheric Corrosion of Ancient Door Knockers via Neural Networks

被引:2
|
作者
Houshmandynia, Shahrzad [1 ]
Raked, Roya [2 ]
Golbabaei, Fardad [3 ]
机构
[1] Islamic Azad Univ, Arak Branch, Dept MBA Mkt, POB 1997683953, Arak, Iran
[2] Dept Masters Handicrafts Art & Architecture Ardak, Yazd, Iran
[3] AREEO, Res Inst Forests & Rangelands, Dept Wood & Paper Sci, Tehran, Iran
来源
CHEMICAL METHODOLOGIES | 2018年 / 2卷 / 04期
关键词
Anticipation; Neural network; Atmospheric corrosion; Bronze corrosion;
D O I
10.22034/CHEMM.2018.65388
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The importance of door knockers persuades us to anticipate the atmospheric corrosion through Neural Network (NN) which is validated by data originated from literature. NNs are used in order to anticipate the effective parameter on bronze atmospheric corrosion including the ambient temperature, exposition time, relative humidity, PH, SO2 concentration as an air pollutant and also metal's precipitations. As these factors are extremely complicated, exact mathematical language of the diverse metals corrosion are not comprehended. The results of this study showed that SO2 concentration as an air pollutant and time of exposition are the fundamental effects on corrosion weight loss of bronze.
引用
收藏
页码:324 / 332
页数:9
相关论文
共 50 条
  • [1] On the Prediction of Atmospheric Corrosion of Metals and Alloys in Chile Using Artificial Neural Networks
    Vera, Rosa
    Ossandon, Sebastian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (12): : 7131 - 7151
  • [2] PREDICTION OF METAL CORROSION BY NEURAL NETWORKS
    Jancikova, Z.
    Zimny, O.
    Kostial, P.
    METALURGIJA, 2013, 52 (03): : 379 - 381
  • [3] Fatigue damage prediction via neural networks
    Lopes, TAP
    Ebecken, NFF
    OFFSHORE ENGINEERING, 1997, : 253 - 263
  • [4] Disease Prediction via Graph Neural Networks
    Sun, Zhenchao
    Yin, Hongzhi
    Chen, Hongxu
    Chen, Tong
    Cui, Lizhen
    Yang, Fan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) : 818 - 826
  • [5] Corrosion prediction in aging aircraft materials using neural networks
    Bailey, RA
    Pidaparti, RM
    Jayanti, S
    Palakal, MJ
    COLLECTION OF THE 41ST AIAA/ASME/ASCE/AHS/ASC STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE AND EXHIBIT, VOL 1 PTS 1-3, 2000, : 2058 - 2065
  • [6] Atmospheric corrosion prediction: a review
    Cai, Yikun
    Xu, Yuanming
    Zhao, Yu
    Ma, Xiaobing
    CORROSION REVIEWS, 2020, 38 (04) : 299 - 321
  • [7] Prediction of Atmospheric Corrosion - A Review
    Adikari, A. A. M. T.
    Munasinghe, R. G. N. De S.
    Jayatileke, S.
    ENGINEER-JOURNAL OF THE INSTITUTION OF ENGINEERS SRI LANKA, 2014, 47 (02): : 75 - 83
  • [8] Atmospheric corrosion prediction of steels
    Hou, W
    Liang, C
    CORROSION, 2004, 60 (03) : 313 - 322
  • [9] Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning
    Pei, Zibo
    Zhang, Dawei
    Zhi, Yuanjie
    Yang, Tao
    Jin, Lulu
    Fu, Dongmei
    Cheng, Xuequn
    Terryn, Herman A.
    Mol, Johannes M. C.
    Li, Xiaogang
    CORROSION SCIENCE, 2020, 170
  • [10] Prediction of dressing in grinding operation via neural networks
    D'Addona, Doriana M.
    Matarazzo, Davide
    Teti, Roberto
    de Aguiar, Paulo R.
    Bianchi, Eduardo C.
    Fornaro, Arcangelo
    10TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING - CIRP ICME '16, 2017, 62 : 299 - 304